Skip to main content
Log in

Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp.

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chromosomal integration and expression of heterologous gene(s) are favored in industrial biotechnology due to the inheriting expression stability. Yet, chromosomal expression is commonly weaker than plasmid one. The effect on gene expression level at 13 chromosomal locations in Escherichia coli was investigated using the polyhydroxybutyrate (PHB) synthesis pathway encoded by a phaCAB operon as a reporter. When 11 copies of phaCAB were randomly integrated into 11 of the 13 chromosomal locations, respectively, 5.2 wt% of PHB was produced. PHB (34.1 wt%) was accumulated by a recombinant E. coli inserted chromosomally with 50 copies of phaCAB in the active asnB site using a Cre-loxP recombination method. This PHB accumulation level was equivalent to a medium-copy-number plasmid expression system, suggesting the importance of chromosomal gene copy number for PHB production by E. coli. This result was used to manipulate a Halomonas strain. One copy of genes scpAB encoding methylmalonyl-CoA mutase and methylmalonyl-CoA decarboxylase was inserted into the strongest expression site porin in the chromosome of the 2-methylcitrate synthase (prpC) deleted mutant Halomonas TD08, leading to the synthesis of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) from glucose as the sole carbon source. The chromosome-engineered strain produced PHBV consisting of 5–12 mol% 3-hydroxyvalerate (3HV) stably compared with unstable fluctuation of 7–25 mol% 3HV by a medium-copy-number plasmid system. These results demonstrated that chromosome engineering based on active transcriptional site and gene copy number is more feasible for polyhydroxyalkanoate (PHA) synthesis in Halomonas TD08 compared with in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albermann C, Trachtmann N, Sprenger GA (2010) A simple and reliable method to conduct and monitor expression cassette integration into the Escherichia coli chromosome. Biotechnol J 5:32–38

    Article  CAS  PubMed  Google Scholar 

  • Aldor AS, Kim SW, Prather KLJ, Keasling JD (2002) Metabolic engineering of a novel propionate-independent pathway for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica Serovar Typhimurium. Appl Environ Microb 68:3848–3854

    Article  CAS  Google Scholar 

  • Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5:246–250

    Article  CAS  Google Scholar 

  • Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Patel MK (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112:2082–2099

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Wang Q, Wei GQ, Liang QF, Qi QS (2011) Production in Escherichia coli of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with differing monomer compositions from unrelated carbon sources. Appl Environ Microbiol 77:4886–4893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiang CJ, Chen PT, Chao YP (2008) Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli. Biotechnol Bioeng 101:985–995

    Article  CAS  PubMed  Google Scholar 

  • Chien CC, Hong CC, Soo PC, Wei YH, Chen SY, Cheng ML, Sun YM (2010) Functional expression of phaCAB genes from Cupriavidus taiwanensis strain 184 in Escherichia coli for polyhydroxybutyrate production. Appl Biochem Biotechnol 162:2355–2364

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friehs K (2004) Plasmid copy number and plasmid stability. Adv Biochem Eng Biotechnol 86:47–82

    CAS  PubMed  Google Scholar 

  • Fu XZ, Tan D, Aibaidula G, Wu Q, Chen JC, Chen GQ (2014) Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng 23:78–91

    Article  CAS  PubMed  Google Scholar 

  • Ghanegaonkar S, Conrad J, Beifuss U, Sprenger GA, Albermann C (2012) Towards the in vivo production of tocotrienol compounds: engineering of a plasmid-free Escherichia coli strain for the heterologous synthesis of 2-methyl-6-geranylgeranyl-benzoquinol. J Biotechnol 164:238–247

    Article  CAS  PubMed  Google Scholar 

  • Haldimann A, Wanner BL (2001) Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 183:6384–6393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haller T, Buckel T, Retey J, Gerlt JA (2000) Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry 39:4622–4629

    Article  CAS  PubMed  Google Scholar 

  • Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12

    Article  CAS  PubMed  Google Scholar 

  • Horng YT, Chien CC, Wei YH, Chen SY, Lan JCW, Sun YM, Soo PC (2011) Functional cis-expression of phaCAB genes for poly(3-hydroxybutyrate) production by Escherichia coli. Lett Appl Microbiol 52:475–483

    Article  CAS  PubMed  Google Scholar 

  • Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358

    Article  CAS  PubMed  Google Scholar 

  • Lemuth K, Steuer K, Albermann C (2011) Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Fact 10

  • Li T, Chen XB, Chen JC, Wu Q, Chen GQ (2014) Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnol J 9:1503–1511

    Article  CAS  PubMed  Google Scholar 

  • Li ZJ, Shi ZY, Jian J, Guo YY, Wu Q, Chen GQ (2010) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng 12:352–359

    Article  CAS  PubMed  Google Scholar 

  • Mairhofer J, Scharl T, Marisch K, Cserjan-Puschmann M, Striedner G (2013) Comparative transcription profiling and in-depth characterization of plasmid-based and plasmid-free Escherichia coli expression systems under production conditions. Appl Environ Microbiol 79:3802–3812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Minaeva NI, Gak ER, Zimenkov DV, Skorokhodova AY, Biryukova IV, Mashko SV (2008) Dual-In/Out strategy for genes integration into bacterial chromosome: a novel approach to step-by-step construction of plasmid-less marker-less recombinant E-coli strains with predesigned genome structure. BMC Biotechnol 8

  • Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biol Technol 13:142–150

    Article  CAS  Google Scholar 

  • Posfai G, Kolisnychenko V, Bereczki Z, Blattner FR (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27:4409–4415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696

    Article  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C-T method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Siegele DA, Hu JC (1997) Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci U S A 94:8168–8172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silva LF, Gomez JGC, Oliveira MS, Torres BB (2000) Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV) production by Burkholderia sp. J Biotechnol 76:165–174

    Article  CAS  PubMed  Google Scholar 

  • Simon R (1994) High frequency mobilization of gram-negative bacterial replicons by the in vivo constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420

    Article  Google Scholar 

  • Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A, Fuchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  PubMed  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Striedner G, Pfaffenzeller I, Markus L, Nemecek S, Grabherr R, Bayer K (2010) Plasmid-free T7-based Escherichia coli expression systems. Biotechnol Bioeng 105:786–794

    CAS  PubMed  Google Scholar 

  • Tan D, Wu Q, Chen JC, Chen GQ (2014) Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng 26:34–47

    Article  CAS  Google Scholar 

  • Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour Technol 102:8130–8136

    Article  CAS  PubMed  Google Scholar 

  • Tian G, Wu Q, Sun SQ, Noda I, Chen GQ (2001) Study of thermal melting behavior of microbial polyhydroxyalkanoates using two-dimensional Fourier-transform infrared FT-IR correlation spectroscopy. Appl Spectrosc 55:888–893

    Article  CAS  Google Scholar 

  • Tyo KEJ, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27:760–765

    Article  CAS  PubMed  Google Scholar 

  • Voss I, Steinbüchel A (2006) Application of a KDPG-aldolase gene-dependent addiction system for enhanced production of cyanophycin in Ralstonia eutropha strain H16. Metab Eng 8:66–78

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Liu XL, Qi QS (2014) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli. Appl Microbiol Biotechnol 98:3923–3931

    Article  CAS  PubMed  Google Scholar 

  • Wang TW, Ma XY, Zhu H, Li AT, Du GC, Chen J (2012) Available methods for assembling expression cassettes for synthetic biology. Appl Microbiol Biotechnol 93:1853–1863

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Wang H, Chen JC, Chen GQ (2014) Effects of cascaded vgb promoters on poly(hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli grown micro-aerobically. Appl Microbiol Biotechnol 98:10013–10021

    Article  CAS  PubMed  Google Scholar 

  • Yadav VG, De Mey M, Lim CG, Ajikumar PK, Stephanopoulos G (2012) The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 14:233–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang JE, Choi YJ, Lee SJ, Kang KH, Lee H, Oh YH, Lee SH, Park SJ, Lee SY (2014) Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol 98:95–104

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Chen JC, Wu Q, Chen GQ (2014a) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv. doi:10.1016/j.biotechadv.2014.10.008

    PubMed  Google Scholar 

  • Yin J, Fu XZ, Wu Q, Chen JC, Chen GQ (2014b) Development of an enhanced chromosomal expression system based on porin synthesis operon for halophile Halomonas sp. Appl Microbiol Biotechnol 98:8987–8997

    Article  CAS  PubMed  Google Scholar 

  • Yue HT, Ling C, Yang T, Chen XB, Chen YL, Deng HT, Wu Q, Chen JC, Chen GQ (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels 7

Download references

Acknowledgments

We are grateful to Professor Alexander Steinbüchel for the generous donation of the plasmid pBHR68. This research was financially supported by National High Tech 973 Basic Research Fund (Grant No. 2012CB725201 to GQC and No. 2012CB725204 to QW) and partial National High Tech 863 Grant (No. 2012AA02A702 and No. 2013AA020301 to QW). A grant from the National Natural Science Foundation of China (Grant No. 31270146 to GQC) also contributed to this study. The 6-L fermentation studies were conducted with kind assistance from Mr. Zhao Kai in Qingdao KDN Biotech Co., Ltd, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Wang, H., Fu, XZ. et al. Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp.. Appl Microbiol Biotechnol 99, 5523–5534 (2015). https://doi.org/10.1007/s00253-015-6510-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6510-8

Keywords

Navigation