Skip to main content

Advertisement

Log in

Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Three microbial strains were isolated from the rhizosphere of alfalfa (Medicago sativa), grass mixture (Festuca rubra, 75 %; Lolium perenne, 20 %; Poa pratensis, 10 %), and rape (Brassica napus) on the basis of their high capacity to use crude oil as the sole carbon and energy source. These isolates used an unusually wide spectrum of hydrocarbons as substrates (more than 80), including n-alkanes with chain lengths ranging from C12 to C32, monomethyl- and monoethyl-substituted alkanes (C12–C23), n-alkylcyclo alkanes with alkyl chain lengths from 4 to 18 carbon atoms, as well as substituted monoaromatic and diaromatic hydrocarbons. These three strains were identified as Gordonia rubripertincta and Rhodococcus sp. SBUG 1968. During their transformation of this wide range of hydrocarbon substrates, a very large number of aliphatic, alicyclic, and aromatic acids was detected, 44 of them were identified by GC/MS analyses, and 4 of them are described as metabolites for the first time. Inoculation of plant seeds with these highly potent bacteria had a beneficial effect on shoot and root development of plants which were grown on oil-contaminated sand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andreoni V, Bernasconi S, Colombo M, van Beilen JB, Cavalca L (2000) Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ Microbiol 2(5):572–577. doi:10.1046/j.1462-2920.2000.00134.x

    Article  CAS  PubMed  Google Scholar 

  • Arenskötter M, Bröker D, Steinbüchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70(6):3195–3204. doi:10.1128/aem. 70.6.3195-3204.2004

    Article  PubMed Central  PubMed  Google Scholar 

  • Atlas RM (1991) Microbial hydrocarbon degradation - bioremediation of oil spills. J Chem Technol Biotechnol 52(2):149–156

    Article  CAS  Google Scholar 

  • Atlas RM, Atlas MC (1991) Biodegradation of oil and bioremediation of oil spills. Curr Opin Biotechnol 2(3):440–443. doi:10.1016/s0958-1669(05)80153-3

    Article  CAS  Google Scholar 

  • Awe S, Mikolasch A, Hammer E, Schauer F (2008) Degradation of phenylalkanes and characterization of aromatic intermediates acting as growth inhibiting substances in hydrocarbon utilizing yeast Candida maltosa. Int Biodeterior Biodegrad 62(4):408–414. doi:10.1016/j.ibiod.2008.03.007

    Article  CAS  Google Scholar 

  • Awe S, Mikolasch A, Schauer F (2009) Formation of coumarines during the degradation of alkyl substituted aromatic oil components by the yeast Trichosporon asahii. Appl Microbiol Biotechnol 84(5):965–976. doi:10.1007/s00253-009-2044-2

    Article  CAS  PubMed  Google Scholar 

  • Beam HW, Perry JJ (1974) Microbial degradation and assimilation of n-alkyl-substituted cycloparaffins. J Bacteriol 118(2):394–399

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhatia M, Singh HD (1996) Biodegradation of commercial linear alkyl benzenes by Nocardia amarae. J Biosci 21(4):487–496. doi:10.1007/bf02703213

    Article  CAS  Google Scholar 

  • Blakley ER, Papish B (1982) The metabolism of cyclohexanecarboxylic acid and 3-cyclohexenecarboxylic acid by Pseudomonas putida. Can J Microbiol 28(12):1324–1329

    Article  CAS  PubMed  Google Scholar 

  • Cirou A, Diallo S, Kurt C, Latour X, Faure D (2007) Growth promotion of quorum-quenching bacteria in the rhizosphere of Solanum tuberosum. Environ Microbiol 9(6):1511–1522. doi:10.1111/j.1462-2920.2007.01270.x

    Article  CAS  PubMed  Google Scholar 

  • Clayton RA, Sutton G, Hinkle PS, Bult C, Fields C (1995) Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacteriol 45(3):595–599

    Article  CAS  PubMed  Google Scholar 

  • De Boer TD, Backer HJ (1956) Diazomethane. In: J LN (ed) Organic synthesis, vol 36. Wiley, New York, NY, pp 14–16

  • de Carvalho CCCR, da Fonseca MMR (2005a) Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol Ecol 51(3):389–399. doi:10.1016/j.femsec.2004.09.010

    Article  PubMed  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2005b) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67(6):715–726. doi:10.1007/s00253-005-1932-3

    Article  PubMed  Google Scholar 

  • de Carvalho CCCR, Parreno-Marchante B, Neumann G, da Fonseca MMR, Heipieper HJ (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol 67(3):383–388. doi:10.1007/s00253-004-1750-z

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82(2):311–320. doi:10.1007/s00253-008-1809-3

    Article  CAS  PubMed  Google Scholar 

  • Diallo S, Crepin A, Barbey C, Orange N, Burini J-F, Latour X (2011) Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiol Ecol 75(3):351–364. doi:10.1111/j.1574-6941.2010.01023.x

    Article  CAS  PubMed  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59(2–3):143–152. doi:10.1007/s00253-002-1024-6

    CAS  PubMed  Google Scholar 

  • Dutta TK, Harayama S (2001) Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl Environ Microbiol 67(4):1970–1974. doi:10.1128/aem. 67.4.1970-1974.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fedorak PM, Westlake DWS (1986) Fungal metabolism of n-alkylbenzenes. Appl Environ Microbiol 51(2):435–437

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fedorak PM, Payzant JD, Montgomery DS, Westlake DWS (1988) Microbial degradation of n-alkyl tetrahydrothiophenes found in petroleum. Appl Environ Microbiol 54(5):1243–1248

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fedorak PM, Coy DL, Peakman TM (1996) Microbial metabolism of some 2,5-substituted thiophenes. Biodegradation 7(4):313–327. doi:10.1007/bf00115745

    Article  CAS  Google Scholar 

  • Feinberg EL, Ramage PIN, Trudgill PW (1980) The degradation of n-alkylcycloalkanes by a mixed bacterial culture. J Gen Microbiol 121(DEC):507–511

  • Gailiūtė I, Kavaliauskė M, Aikaitė-Stanaitienė J (2011) Changes in total oil hydrocarbon composition during degradation with sorbent bacterial preparation. Biologija 57:70–77

    Google Scholar 

  • Gallego S, Vila J, Tauler M, Nieto JM, Breugelmans P, Springael D, Grifoll M (2014) Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation 25(4):543–556. doi:10.1007/s10532-013-9680-z

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30. doi:10.1016/j.plantsci.2008.09.014

    Article  CAS  Google Scholar 

  • Graj W, Lisiecki P, Szulc A, Chrzanowski L, Wojtera-Kwiczor J (2013) Bioaugmentation with petroleum-degrading consortia has a selective growth-promoting impact on crop plants germinated in diesel oil-contaminated soil. Water Air Soil Pollut 224:1676. doi:10.1007/s11270-013-1676-0

    Article  PubMed Central  PubMed  Google Scholar 

  • Heipieper HJ (2007) Bioremediation of soils contaminated with aromatic compounds: Effects of rhizosphere, bioavailability, gene regulation and stress adaptation. In: Heipieper HJ (ed) Bioremediation of soils contaminated with aromatic compounds. NATO Science Series IV-Earth and Environmental Sciences, vol 76, pp 1–4

  • Herter S, Mikolasch A, Schauer F (2012) Identification of phenylalkane derivatives when Mycobacterium neoaurum and Rhodococcus erythropolis were cultured in the presence of various phenylalkanes. Appl Microbiol Biotechnol 93(1):343–355. doi:10.1007/s00253-011-3415-z

    Article  PubMed  Google Scholar 

  • Hong SH, Ryu H, Kim J, Cho KS (2011) Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation 22(3):593–601. doi:10.1007/s10532-010-9432-2

    Article  CAS  PubMed  Google Scholar 

  • Hundt K, Wagner M, Becher D, Hammer E, Schauer F (1998) Effect of selected environmental factors on degradation and mineralization of biaryl compounds by the bacterium Ralstonia pickettii in soil and compost. Chemosphere 36(10):2321–2335

    Article  CAS  PubMed  Google Scholar 

  • Jigami Y, Kawasaki Y, Omori T, Minoda Y (1979) Coexistence of different pathways in the metabolism of n-propylbenzene by Pseudomonas sp. Appl Environ Microbiol 38(5):783–788

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jussila MM, Jurgens G, Lindstrom K, Suominen L (2006) Genetic diversity of culturable bacteria in oil-contaminated rhizosphere of Galega orientalis. Environ Pollut 139(2):244–257. doi:10.1016/j.envpol.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  • Kästner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl Microbiol Biotechnol 41(2):267–273

    Article  Google Scholar 

  • Khorasani AC, Mashreghi M, Yaghmaei S (2013) Study on biodegradation of Mazut by newly isolated strain Enterobacter cloacae BBRC10061: improving and kinetic investigation. Iran J Environ Health Sci Eng 10(1):2–9. doi:10.1186/1735-2746-10-2

    Article  Google Scholar 

  • Kim D, Kim YS, Kim SK, Kim SW, Zylstra GJ, Kim YM, Kim E (2002) Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl Environ Microbiol 68(7):3270–3278. doi:10.1128/aem. 68.7.3270-3278.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. doi:10.1099/ijs. 0.038075-0

    Article  CAS  PubMed  Google Scholar 

  • Koma D, Sakashita Y, Kubota K, Fujii Y, Hasumi F, Chung SY, Kubo M (2005) Degradation pathways of cyclic alkanes in Rhodococcus sp NDKK48. Appl Microbiol Biotechnol 66(1):92–99. doi:10.1007/s00253-004-1623-5

    Article  Google Scholar 

  • Komukai-Nakamura S, Sugiura K, Yamauchi-Inomata Y, Toki H, Venkateswaran K, Yamamoto S, Tanaka H, Harayama S (1996) Construction of bacterial consortia that degrade Arabian light crude oil. J Ferment Bioeng 82(6):570–574. doi:10.1016/s0922-338x(97)81254-8

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17(1):6–15. doi:10.1094/MPMI.2004.17.1.6

    Article  CAS  PubMed  Google Scholar 

  • Kummer C, Schumann P, Stackebrandt E (1999) Gordonia alkanivorans sp. nov., isolated from tar-contaminated soil. Int J Syst Bacteriol 49 Pt 4:1513-22

  • Lin C-L, Shen F-T, Tan C-C, Huang C-C, Chen B-Y, Arun AB, Young C-C (2012) Characterization of Gordonia sp. strain CC-NAPH129-6 capable of naphthalene degradation. Microbiol Res 167(7):395–404. doi:10.1016/j.micres.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  • Lo Piccolo L, De Pasquale C, Fodale R, Puglia AM, Quatrini P (2011) Involvement of an alkane hydroxylase system of Gordonia sp strain SoCg in degradation of solid n-alkanes. Appl Environ Microbiol 77(4):1204–1213. doi:10.1128/aem. 02180-10

    Article  PubMed Central  PubMed  Google Scholar 

  • Maila MP, Randima P, Cloete TE (2005) Multispecies and monoculture rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) from the soil. Int J Phytoremediat 7(2):87–98. doi:10.1080/16226510590950397

    Article  CAS  Google Scholar 

  • McKenna EJ, Kallio RE (1971) Microbial metabolism of the isoprenoid alkane pristane. Proc Natl Acad Sci U S A 68(7):1552–1554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mikolasch A, Hammer E, Schauer F (2003) Synthesis of imidazol-2-yl amino acids by using cells from alkane-oxidizing bacteria. Appl Environ Microbiol 69(3):1670–1679. doi:10.1128/aem. 69.3.1670-1679.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan P, Watkinson RJ (1994) Biodegradation of components of petroleum. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer, Dordrecht, pp 1–31

    Chapter  Google Scholar 

  • Nhi-Cong LT, Mikolasch A, Klenk H-P, Schauer F (2009) Degradation of the multiple branched alkane 2,6,10,14-tetramethyl-pentadecane (pristane) in Rhodococcus ruber and Mycobacterium neoaurum. Int Biodeterior Biodegrad 63(2):201–207. doi:10.1016/j.ibiod.2008.09.002

    Article  CAS  Google Scholar 

  • Nhi-Cong LT, Mikolasch A, Awe S, Sheikhany H, Klenk H-P, Schauer F (2010) Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. J Basic Microbiol 50(3):241–253. doi:10.1002/jobm.200900358

    Article  CAS  Google Scholar 

  • Nicdao MAC, Rivera WL (2012) Two strains of Gordonia terrae isolated from used engine oil contaminated soil utilize short- to long-chain n-alkanes. Phil Sci Lett 5(2):199–208

    Google Scholar 

  • Owsianiak M, Szulc A, Chrzanowski L, Cyplik P, Bogacki M, Olejnik-Schmidt AK, Heipieper HJ (2009) Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity. Appl Microbiol Biotechnol 84(3):545–553. doi:10.1007/s00253-009-2040-6

    Article  CAS  PubMed  Google Scholar 

  • Perry JJ (1977) Microbial metabolism of cyclic hydrocarbons and related compounds. Crit Rev Microbiol 5(4):387–412. doi:10.3109/10408417709102811

    Article  CAS  Google Scholar 

  • Poole PR, Whitaker G (1997) Biotransformation of 6-pentyl-2-pyrone by Botrytis cinerea in liquid cultures. J Agric Food Chem 45(1):249–252. doi:10.1021/jf9603644

    Article  CAS  Google Scholar 

  • Rapp P, Gabriel-Jürgens LH (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 149(Pt 10):2879–2890

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (1978) Degradation of aliphatic hydrocarbons. In: Watkinson RJ (ed) Developments in biodegradation of hydrocarbons, vol 1. Applied Science, London, pp 1–46

    Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490. doi:10.1111/j.1462-2920.2009.01948.x

    Article  CAS  PubMed  Google Scholar 

  • Rontani JF, Bonin P (1992) Utilization of n-alkyl-substituted cyclohexanes by a marine Alcaligenes. Chemosphere 24(10):1441–1446. doi:10.1016/0045-6535(92)90266-t

    Article  CAS  Google Scholar 

  • Sariasla FS, Harper DB, Higgins IJ (1974) Microbial degradation of hydrocarbons catabolism of 1-phenyl-alkanes by Nocardia salmonicolor. Biochem J 140(1):31–45

    Google Scholar 

  • Schumann P, Maier T (2014) MALDI-TOF mass spectrometry applied to classification and identification of bacteria. Method Microbiol. doi:10.1016/bs.mim.2014.06.002

    Google Scholar 

  • Shen F-T, Young L-S, Hsieh M-F, Lin S-Y, Young C-C (2010) Molecular detection and phylogenetic analysis of the alkane 1-monooxygenase gene from Gordonia spp. Syst Appl Microbiol 33(2):53–59. doi:10.1016/j.syapm.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  • Singh SN, Kumari B, Mishra S (2012) Microbial degradation of alkanes. In: Singh SN (ed) Microbial degradation of xenobiotics, environmental science and engineering. Springer-Verlag, Berlin, Heidelberg, pp 439–469

    Chapter  Google Scholar 

  • Smith DI, Callely AG (1975) The microbial degradation of cyclohexane carboxylic acid. J Gen Microbiol 91(NOV):210–212

  • Smith MR, Ratledge C (1989) Catabolism of alkylbenzenes by Pseudomonas sp. NCIB 10643. Appl Microbiol Biotechnol 32(1):68–75

    Article  CAS  Google Scholar 

  • Solano-Serena F, Marchal R, Vandecasteele J-P (2008) Biodegradation of aliphatic and alicyclic hydrocarbons. In: Vandecasteele J-P (ed) Petroleum microbiology: concepts, environmental implications, industrial applications, vol 1. Editions Technip, Paris, pp 173–240

    Google Scholar 

  • Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81(9):1084–1090. doi:10.1016/j.chemosphere.2010.09.034

    Article  CAS  PubMed  Google Scholar 

  • Song HG, Wang XP, Bartha R (1990) Bioremediation potential of terrestrial fuel spills. Appl Environ Microbiol 56(3):652–656

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song X, Xu Y, Li G, Zhang Y, Huang T, Hu Z (2011) Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar Pollut Bull 62(10):2122–2128. doi:10.1016/j.marpolbul.2011.07.013

    Article  CAS  PubMed  Google Scholar 

  • Stead DE, Sellwood JE, Wilson J, Viney I (1992) Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72:315–321. doi:10.1111/j.1365-2672.1992.tb01841.x

    Article  Google Scholar 

  • Stope MB, Becher D, Hammer E, Schauer F (2002) Cometabolic ring fission of dibenzofuran by Gram-negative and Gram-positive biphenyl-utilizing bacteria. Appl Microbiol Biotechnol 59(1):62–67. doi:10.1007/s00253-0002-0979-7

    Article  CAS  PubMed  Google Scholar 

  • Suslow TV, Schroth MN, Isaka M (1982) Application of a rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology 72:917–918. doi:10.1094/Phyto-77-917

    Article  Google Scholar 

  • Takeuchi M, Hatano K (1998) Gordonia rhizosphera sp. nov, isolated from the mangrove rhizosphere. Int J Syst Bacteriol 48:907–912

  • Táncsics A, Benedek T, Farkas M, Máthé I, Márialigeti K, Szoboszlay S, Kukolya J, Kriszt B (2014) Sequence analysis of 16S rRNA, gyrB and catA genes and DNA–DNA hybridization reveal that Rhodococcus jialingiae is a later synonym of Rhodococcus qingshengii. Int J Syst Evol Microbiol 64:298–301

    Article  PubMed  Google Scholar 

  • Tjessem K, Aaberg A (1983) Photochemical transformation and degradation of petroleum residues in the marine environment. Chemosphere 12(11–1):1373–1394. doi:10.1016/0045-6535(83)90070-x

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59(5):489–496. doi:10.1007/s00284-009-9464-1

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58(4):427–440. doi:10.2516/ogst:2003026

    Article  Google Scholar 

  • Waldau D, Methling K, Mikolasch A, Schauer F (2009) Characterization of new oxidation products of 9H-carbazole and structure related compounds by biphenyl-utilizing bacteria. Appl Microbiol Biotechnol 81(6):1023–1031. doi:10.1007/s00253-008-1723-8

    Article  CAS  PubMed  Google Scholar 

  • Wang XP, Bartha R (1990) Effects of bioremediation on residues, activity and toxicity in soil contaminated by fuel spills. Soil Biol Biochem 22(4):501–505. doi:10.1016/0038-0717(90)90185-3

    Article  CAS  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14(1):29–73. doi:10.3109/07388559409079833

    Article  CAS  PubMed  Google Scholar 

  • Watkinson RJ, Morgan P (1990) Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1(2–3):79–92

    Article  CAS  PubMed  Google Scholar 

  • Webley DM, Duff RB, Farmer VC (1956) Evidence for β-oxidation in the metabolism of saturated aliphatic hydrocarbons by soil species of Nocardia. Nature 178(4548):1467–1468. doi:10.1038/1781467b0

    Article  CAS  Google Scholar 

  • Werle E, Schneider C, Renner M, Volker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res 22(20):4354–4355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White GF, Russell NJ (1994) Biodegradation of anionic surfactants and related molecules. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer, Dordrecht, pp 143–177

    Chapter  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64(7):2578–2584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Widdel F, Musat F (2010) Diversity and common principles in enzymatic activation of hydrocarbons. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, Heidelberg, pp 981–1009

    Chapter  Google Scholar 

  • Young CC, Lin TC, Yeh MS, Shen FT, Chang JS (2005) Identification and kinetic characteristics of an indigenous diesel-degrading Gordonia alkanivorans strain. World J Microbiol Biotechnol 21(8–9):1409–1414. doi:10.1007/s11274-005-5742-7

    Article  Google Scholar 

Download references

Acknowledgments

We thank R. Jack (Institute of Immunology, University of Greifswald) for help in preparing the manuscript. We thank Central Asian Biodiversity Network (CABNET), in particular the project manager Michael Manthey (Institute of Botany and Landscape Ecology, University of Greifswald), for the opportunity to establish active contacts between scientists from the Al-Farabi Kazakh National University and the University of Greifswald. Financial support from Deutscher Akademischer Austauschdienst (DAAD) (project code 50754935, project title “CABNET-Central Asian Biodiversity Network”) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annett Mikolasch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikolasch, A., Omirbekova, A., Schumann, P. et al. Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan. Appl Microbiol Biotechnol 99, 4071–4084 (2015). https://doi.org/10.1007/s00253-014-6320-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6320-4

Keywords

Navigation