Skip to main content
Log in

Effect of static magnetic field on electricity production and wastewater treatment in microbial fuel cells

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of a magnetic field (MF) on electricity production and wastewater treatment in two-chamber microbial fuel cells (MFCs) has been investigated. Electricity production capacity could be improved by the application of a low-intensity static MF. When a MF of 50 mT was applied to MFCs, the maximum voltage, total phosphorus (TP) removal efficiency, and chemical oxygen demand (COD) removal efficiency increased from 523 ± 2 to 553 ± 2 mV, ∼93 to ∼96 %, and ∼80 to >90 %, respectively, while the start-up time and coulombic efficiency decreased from 16 to 10 days and ∼50 to ∼43 %, respectively. The MF effects were immediate, reversible, and not long lasting, and negative effects on electricity generation and COD removal seemed to occur after the MF was removed. The start-up and voltage output were less affected by the MF direction. Nitrogen compounds in magnetic MFCs were nitrified more thoroughly; furthermore, a higher proportion of electrochemically inactive microorganisms were found in magnetic systems. TP was effectively removed by the co-effects of microbe absorption and chemical precipitation. Chemical precipitates were analyzed by a scanning electron microscope capable of energy-dispersive spectroscopy (SEM-EDS) to be a mixture of phosphate, carbonate, and hydroxyl compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA (2005) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington

    Google Scholar 

  • Butler CS, Nerenberg R (2010) Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies. Appl Microbiol Biotechnol 86:1399–1408

    Article  CAS  PubMed  Google Scholar 

  • Chen SS, Liu GL, Zhang RD, Qin BY, Luo Y, Hou YP (2012) Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure. Bioresour Technol 116:507–511

    Article  CAS  PubMed  Google Scholar 

  • Cusick RD, Logan BE (2012) Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresour Technol 107:110–115

    Article  CAS  PubMed  Google Scholar 

  • Domagalski J, Lin C, Luo Y, Kang J, Wang S, Brown LR, Munn MD (2007) Eutrophication study at the Panjiakou-Daheiting reservoir system, northern Hebei province, People’s Republic of China: chlorophyll-A model and sources of phosphorus and nitrogen. Agr Water Manag 94(1–3):43–53

    Article  Google Scholar 

  • Ichihashi O, Hirooka K (2012) Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresour Technol 114:303–307

    Article  CAS  PubMed  Google Scholar 

  • Ichihashi O, Yamamoto N, Hirooka K (2012) Power generation by and microbial community structure in microbial fuel cell treating animal wastewater. J Jpn Soc Water Environ 35(1):19–26

    Article  Google Scholar 

  • Jiang D, Li B, Jia W, Lei Y (2010a) Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells. Appl Biochem Biotechnol 160(1):182–196

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Li X, Raymond D, Mooradain J, Li B (2010b) Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications. Int J Hydrog Energy 35(16):8683–8689

    Article  CAS  Google Scholar 

  • Jiang D, Curtis M, Troop E, Scheible K, McGrath J, Boxun H, Suib S, Raymond D, Baikun L (2011) A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int J Hydrog Energy 36(1):876–884

    Article  CAS  Google Scholar 

  • Jones AR, Hay S, Woodward JR, Scrutton NS (2007) Magnetic field effect studies indicate reduced geminate recombination of the radical pair in substrate-bound adenosylcobalamin-dependent ethanolamine ammonia lyase. J Am Chem Soc 129(50):15718–15727

    Article  CAS  PubMed  Google Scholar 

  • Jung JT, Sofer S (1997) Enhancement of phenol biodegradation by south magnetic field exposure. J Chem Technol Biotechnol 70(3):229–303

    Article  Google Scholar 

  • Jung JT, Sanji B, Godbole S, Sofer S (1993) Biodegradation of phenol: a comparative study with and without applying magnetic fields. J Chem Technol Biotechnol 56(1):73–76

    Article  CAS  PubMed  Google Scholar 

  • Li WW, Sheng GP, Liu XW, Cai PJ, Sun M, Xiao X, Wang YK, Tong ZH, Dong F, Yu HQ (2011) Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. Biosens Bioelectron 26(10):3987–3992

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cheng SA, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39(14):5488–5493

    Article  CAS  PubMed  Google Scholar 

  • Liu ST, Yang FL, Meng FG, Chen HH, Gong Z (2008) Enhanced anammox consortium activity for nitrogen removal: impacts of static magnetic field. J Biotechnol 138(3–4):96–102

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19(6):564–571

    Article  CAS  PubMed  Google Scholar 

  • Nelson NO, Mikkelsen RL, Hesterberg DL (2003) Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg: P ratio and determination of rate constant. Bioresour Technol 89(3):229–236

    Article  CAS  PubMed  Google Scholar 

  • Puig S, Serra M, Vilar-Sanz A, Cabré M, Bañeras L, Colprim J, Balaguer MD (2011) Autotrophic nitrite removal in the cathode of microbial fuel cells. Bioresour Technol 102(6):4462–4467

    Article  CAS  PubMed  Google Scholar 

  • Puig S, Coma M, Desloover J, Boon N, Colprim J, Balaguer MD (2012) Autotrophic denitrification in microbial fuel cells treating low ionic strength waters. Environ Sci Technol 46:2309–2315

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25(18):1531–1535

    Article  CAS  PubMed  Google Scholar 

  • Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11(9):1752–1755

    Article  CAS  Google Scholar 

  • Tao QQ, Luo JJ, Zhou J, Zhou SQ, Liu GL, Zhang RD (2014) Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell. Bioresour Technol 164:402–407

    Article  CAS  PubMed  Google Scholar 

  • Tomska A, Wolny L (2008) Enhancement of biological wastewater treatment by magnetic field exposure. Desalination 222(1–3):368–373

    Article  CAS  Google Scholar 

  • Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42(12):3013–3024

    Article  CAS  PubMed  Google Scholar 

  • Virdis B, Rabaey K, Yuan Z, Rozendal RA, Keller J (2009) Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal. Environ Sci Technol 43(13):5144–5149

    Article  CAS  PubMed  Google Scholar 

  • Virdis B, Rabaey K, Rozendal RA, Yuan Z, Keller J (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44(9):2970–2980

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106(6):528–536

    Article  CAS  PubMed  Google Scholar 

  • Yavus H, Celebi SS (2000) Effects of magnetic field on activity of activated sludge in wastewater treatment. Enzym Microbiol Technol 26(1):22–27

    Article  Google Scholar 

  • Yin Y, Huang GT, Tong YR, Liu YD, Zhang LH (2013) Electricity production and electrochemical impedance modeling of microbial fuel cells under static magnetic field. J Power Sources 237:58–63

    Article  CAS  Google Scholar 

  • Zhang QM, Tokiwa M, Doi T, Nakahara T, Chang P, Nakamura N, Hori M, Miyakoshi J, Yonei S (2003) Strong static magnetic field and the induction of mutations through elevated production of reactive oxygen species in Escherichia coli soxR. Int J Radiat Biol 79(4):281–286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation (21277052), the Department of Guangdong Education and the Science and Technology Bureau (2010), the State Key Laboratory of Subtropical Building Science (2013ZC03, 2014ZB04), and the Environmental Protection Bureau (201203) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqi Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Q., Zhou, S. Effect of static magnetic field on electricity production and wastewater treatment in microbial fuel cells. Appl Microbiol Biotechnol 98, 9879–9887 (2014). https://doi.org/10.1007/s00253-014-6136-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6136-2

Keywords

Navigation