Skip to main content
Log in

Extraordinary denaturant tolerance of keratinolytic protease complex assemblies produced by Meiothermus ruber H328

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A moderately thermophilic bacterial strain, Meiothermus ruber H328, can efficiently solubilize intact chicken feathers by aerobic cultivation at 55 °C for 6 days. The keratinolytic proteases extracellularly secreted by the strain were partially purified by an ultrafiltration system and a size-exclusion column chromatography, and thus were found to be two different sizes of macromolecules with an extremely high molecular mass like the sizes of virus and DNA (peak 1 fraction) and with a molecular mass of larger than 500 kDa (peak 2 fraction). They formed protein complex assemblies that were composed of multiple but different proteins. The peak 1 fraction showed more thermophilic characteristics than did the peak 2 fraction in temperature dependence and thermal stability. By contrast, they comparably showed extraordinary resistance to powerful denaturants, SDS at 30 % (w/v) and organic solvents (methanol, ethanol, acetonitrile, acetone, and chloroform) at 40 % (v/v) at 60 °C for 30 min. The extraordinary denaturant tolerance and the large molecular size of the keratinolytic protease complex assemblies suggest the possibility that those may be lipophilic and have the structure of partial membrane fractions, or membrane vesicles, which are exfoliated from the outer membrane of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Clouthierab CM, Pelletier JN (2012) Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem Soc Rev 41:1585–1605

    Article  CAS  Google Scholar 

  • Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282

    Article  CAS  Google Scholar 

  • Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33

    Article  PubMed  CAS  Google Scholar 

  • Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74:81–94

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Haurat MF, Aduse-Opoku J, Rangarajan M, Dorobantu L, Gray MR, Curtis MA, Feldman MF (2011) Selective sorting of cargo proteins into bacterial membrane vesicles. J Biol Chem 286:1269–1276

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Inada S, Watanabe K (2013) Draft genome sequence of Meiothermus ruber H328, which degrades chicken feathers, and identification of proteases and peptidases responsible for degradation. Genome Announc 1:e00176–13

    Article  PubMed Central  PubMed  Google Scholar 

  • Jaouadi B, Abdelmalek B, Fodil D, Ferradji FD, Rekik H, Zarai N, Bejar S (2010) Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from Streptomyces sp. strain AB1 with high stability in organic solvents. Bioresour Technol 101:8361–8369

    Article  PubMed  CAS  Google Scholar 

  • Kisselev AF, Akopian TN, Woo KM, Goldberg AL (1999) The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274:3363–3371

    Article  PubMed  CAS  Google Scholar 

  • Krystyna W, Lobarzewski J, Wolski T (1987) Intracellular keratinase of Trichophyton gallinae. J Med Vet Mycol 25:261–268

    Article  Google Scholar 

  • Kumar D, Bhalla TC (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68:726–736

    Article  PubMed  CAS  Google Scholar 

  • Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Liang X, Bian Y, Tang XF, Xiao G, Tang B (2010) Enhancement of keratinolytic activity of a thermophilic subtilase by improving its autolysis resistance and thermostability under reducing conditions. Appl Microbiol Biotechnol 89:999–1006

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Manni L, Jellouli K, Ghorbel-Bellaaj O, Agrebi R, Haddar A, Sellami-Kamoun A, Nasri M (2010) An oxidant- and solvent-stable protease produced by Bacillus cereus SV1:application in the deproteinization of shrimp wastes and as a laundry detergent additive. Appl Biochem Biotechnol 160:2308–2321

    Article  PubMed  CAS  Google Scholar 

  • Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Yamada Y, Mitsuya H, Shigeri Y, Yoshida Y, Saito Y, Matsui H, Watanabe K (2009) Sustainable and practical degradation of intact chicken feathers by cultivating a newly isolated thermophilic Meiothermus ruber H328. Appl Microbiol Biotechnol 82:941–950

    Article  PubMed  CAS  Google Scholar 

  • Maupin-Furlow J (2011) Proteasomes and protein conjugation across domains of life. Nature Rev Microbiol 10:100–111

    Google Scholar 

  • Nishino T, Nakayama T, Hemmi H, Shimoyama T, Yamashita S, Akai M, Kanagawa T, Hoshi K (2003) Acidulocomposting, an accelerated composting process of garbage under thermoacidophilic conditions for prolonged periods. J Environ Biotech 3:33–36

    Google Scholar 

  • Okamoto M, Yonejima Y, Tsujimoto Y, Suzuki Y, Watanabe K (2001) A thermostable collagenolytic protease with a very large molecular mass produced by thermophilic Bacillus sp. strain MO-1. Appl Microbiol Biotechnol 57:103–108

    Article  PubMed  CAS  Google Scholar 

  • Riessen S, Antranikian G (2001) Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5:399–408

    Article  PubMed  CAS  Google Scholar 

  • Shigeri Y, Matsui T, Watanabe K (2009) Decomposition of intact chicken feathers by a thermophile in combination with an acidulocomposting garbage-treatment process. Biosci Biotechnol Biochem 73:2519–2521

    Article  PubMed  CAS  Google Scholar 

  • Volker C, Lupas AN (2002) Molecular evolution of proteasomes. Curr Top Microbiol Immunol 268:1–22

    PubMed  CAS  Google Scholar 

  • Watanabe K (2004) Collagenolytic proteases from bacteria. Appl Microbiol Biotechnol 63:520–526

    Article  PubMed  CAS  Google Scholar 

  • Wohlgemuth R (2010) Biocatalysis—key to sustainable industrial chemistry. Curr Opin Biotechnol 21:713–724

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Keishi Nomura for technical supports. This work was in part supported by The Iwatani Naoji Foundation (Tokyo, Japan) and Institute for Fermentation (Osaka, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kataoka, M., Yamaoka, A., Kawasaki, K. et al. Extraordinary denaturant tolerance of keratinolytic protease complex assemblies produced by Meiothermus ruber H328. Appl Microbiol Biotechnol 98, 2973–2980 (2014). https://doi.org/10.1007/s00253-013-5155-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5155-8

Keywords

Navigation