Skip to main content

Advertisement

Log in

Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Molecular hydrogen (H2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10–15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antal TK, Krendeleva TE, Rubin AB (2010) Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. Appl Microbiol Biotechnol 89:3–15. doi:10.1007/s00253-010-2879-6

    Article  Google Scholar 

  • Arnon D (1949) Copper enzymes in isolated chloroplasts and polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–5

    Article  CAS  Google Scholar 

  • Bensadoun A, Weinstein D (1976) Assay of proteins in the presence of interfering materials. Anal Biochem 70:241–250. doi:10.1016/S0003-2697(76)80064-4

    Article  CAS  Google Scholar 

  • Esquível MG, Ferreira RB, Teixeira AR (1998) Protein degradation in C3 and C4 plants with particular reference to ribulose bisphosphate carboxylase and glycolate oxidase. J Exp Bot 49:807–816. doi:10.1093/jxb/49.322.807

    Google Scholar 

  • Esquível MG, Pinto TS, Marín-Navarro J, Moreno J (2006) Substitution of tyrosine residues at the aromatic cluster around the βA–βB loop of rubisco small subunit affects the structural stability of the enzyme and the in vivo degradation under stress conditions. Biochemistry 45:5745–5753. doi:10.1021/bi052588y

    Article  Google Scholar 

  • Esquível MG, Amaro HM, Pinto TS, Fevereiro PS, Malcata FX (2011) Efficient H2 production via Chlamydomonas reinhardtii. Trends Biotechnol 29:595–600. doi:10.1016/j.tibtech.2011.06.008

    Article  Google Scholar 

  • Ghysels B, Franck F (2010) Hydrogen photo-evolution upon S deprivation stepwise: an illustration of microalgal photosynthetic and metabolic flexibility and a step stone for future biotechnological methods of renewable H2 production. Photosynth Res 106:145–154. doi:10.1007/s11120-010-9582-4

    Article  CAS  Google Scholar 

  • Grossman AR, Catalanotti C, Yang W, Dubini A, Magneschi L, Subramanian V, Posewitz MC, Seibert M (2011) Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii. New Phytol 190:279–288. doi:10.1111/j.1469-8137.2010.03534.x

    Article  CAS  Google Scholar 

  • Gumpel NJ, Rochaix JD, Purton S (1994) Studies on homologous recombination in the green alga Chlamydomonas reinhardtii. Curr Genet 26:438–442. doi:10.1007/BF00309931

    Article  CAS  Google Scholar 

  • Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269:1022–1032. doi:10.1046/j.0014-2956.2001.02743.x

    Article  CAS  Google Scholar 

  • Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407. doi:10.1007/s00425-007-0626-8

    Article  CAS  Google Scholar 

  • Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res 102:523–540. doi:10.1007/s11120-009-9415-5

    Article  CAS  Google Scholar 

  • Khrebtukova I, Spreitzer RJ (1996) Elimination of the Chlamydomonas gene family that encodes the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 93:13689–13693. doi:10.1073/pnas.93.24.13689

    Article  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177. doi:10.1074/jbc.M503840200

    Article  CAS  Google Scholar 

  • Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol 21:1–6. doi:10.1016/j.copbio.2010.03.012

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  Google Scholar 

  • Marín-Navarro J, Esquível MG, Moreno J (2010) Hydrogen production by Chlamydomonas reinhardtii revisited: rubisco as a biotechnological target. World J Microbiol Biotechnol 26:1785–1793. doi:10.1007/s11274-010-0359-x

    Article  Google Scholar 

  • Melis A (1999) Photosystem II damage and repair cycle in chloroplast: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135. doi:10.1016/S1360-1385(99)01387-4

    Article  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135. doi:10.1104/pp.122.1.127

    Article  CAS  Google Scholar 

  • Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086. doi:10.1007/s00425-007-0609-9

    Article  CAS  Google Scholar 

  • Nguyen AV, Thomas-Hall SR, Malnoe A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM (2008) Transcriptome for photobiological hydrogen production induced sulfur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 7:1965–1979. doi:10.1128/EC.00418-07

    Article  CAS  Google Scholar 

  • Philipps G, Happe T, Hemschemeier A (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 235:729–745. doi:10.1007/s00425-011-1537-2

    Article  CAS  Google Scholar 

  • Posewitz MC, Dubini A, Meuser JE, Seibert M, Ghiraldi ML (2009) Hydrogenases, hydrogen production and anoxia. In: Stern DB (ed) The Chlamydomonas sourcebook (Vol. II). Academic, New York, pp 217–255

  • Rühle T, Hemschemeier A, Melis A, Happe T (2008) A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol 8:107. doi:10.1186/1471-2229-8-107

    Article  Google Scholar 

  • Skillman JB (2008) Quantum yield variation across the three pathways of photosynthesis: not yet out of the dark. J Exp Bot 59:1647–1661. doi:10.1093/jxb/ern029

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Mets L (1981) Photosynthesis-deficient mutants of Chlamydomonas reinhardtii with associated light sensitive phenotypes. Plant Physiol 67:565–569. doi:10.1104/pp.67.3.565

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Esquível MG, Du Y-C, McLaughlin PD (2001) Alanine-scanning mutagenesis of the small-subunit βA–βB loop of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase: substitution at Arg-71 affects thermal stability and CO2/O2 specificity. Biochemistry 40:5615–5621. doi:10.1021/bi002943e

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475. doi:10.1146/annurev.arplant.53.100301.135233

    Article  CAS  Google Scholar 

  • van Lun M, van der Spoel D, Andersson I (2011) Subunit interface dynamics in hexadecameric rubisco. J Mol Biol 411:1083–1098. doi:10.1016/j.jmb.2011.06.052

    Article  Google Scholar 

  • Wang H, Fan X, Zhang Y, Yang D, Guo R (2011) Sustained photo-hydrogen production by Chlorella pyrenoidosa without sulfur depletion. Biotechnol Lett 33:1345–1350. doi:10.1007/s10529-011-0584-x

    Article  CAS  Google Scholar 

  • White AL, Melis A (2006) Biochemistry of hydrogen metabolism in Chlamydomonas reinhardtii wild type and a rubisco-less mutant. Int J Hydrog Energy 31:455–464. doi:10.1016/j.ijhydene.2005.04.028

    Article  CAS  Google Scholar 

  • Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561. doi:10.1007/s004250100660

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sónia R. Vieira for the technical assistance on the last chlorophyll fluorescence measurements. This work was supported by project MICROPHYTE (PTDC/EBB-EBI/102728/2008), funded by FCT (Fundação para a Ciência e Tecnologia, Portugal) and supervised by F. X. Malcata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Esquível.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, T.S., Malcata, F.X., Arrabaça, J.D. et al. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biotechnol 97, 5635–5643 (2013). https://doi.org/10.1007/s00253-013-4920-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4920-z

Keywords

Navigation