Skip to main content
Log in

Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The red yeasts of the Pucciniomycotina have rarely been transformed with DNA molecules. Transformation methods were recently developed for a species of Sporobolomyces, based on selection using uracil auxotrophs and plasmids carrying the wild-type copies of the URA3 and URA5 genes. However, these plasmids were ineffective in the transformation of closely related species. Using the genome-sequenced strain of Rhodotorula graminis as a starting point, the URA3 and URA5 genes were cloned and tested for the transformation ability into different Pucciniomycotina species by biolistic and Agrobacterium-mediated transformations. Transformation success depended on the red yeast species and the origin of the URA3 or URA5 genes, which may be related to the high G + C DNA content found in several species. A new vector was generated to confer resistance to nourseothricin, using a native promoter from R. graminis and the naturally high G + C nourseothricin acetyltransferease gene. This provides a second selectable marker in these species. Targeted gene disruption was tested in Sporobolomyces sp. IAM 13481 using different lengths of homologous DNA with biolistic and Agrobacterium transformation methods. Both DNA delivery methods were effective for targeted replacement of a gene required for carotenoid pigment biosynthesis. The constructs also triggered transgene silencing. These developments open the way to identify and manipulate gene functions in a large group of basidiomycete fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aime MC, Matheny PB, Henk DA, Frieders EM, Nilsson RH, Piepenbring M, McLaughlin DJ, Szabo LJ, Begerow D, Sampaio JP, Bauer R, Weiß M, Oberwinkler F, Hibbett D (2006) An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia 98:896–905

    Article  CAS  Google Scholar 

  • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    Article  CAS  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    CAS  Google Scholar 

  • Castoria R, De Curtis F, Lima G, De Cicco V (1997) β-1 ,3-glucanase activity of two saprophytic yeasts and possible mode of action involved as biocontrol agents against postharvest diseases. Postharvest Biol Technol 12:293–300

    Article  CAS  Google Scholar 

  • Castoria R, Caputo L, De Curtis F, De Cicco V (2003) Resistance of postharvest biocontrol yeasts to oxidative stress: a possible new mechanism of action. Phytopathology 93:564–572

    Article  CAS  Google Scholar 

  • Castoria R, Morena V, Caputo L, Panfili G, De Curtis F, De Cicco V (2005) Effect of the biocontrol yeast Rhodotorula glutinis strain LS11 on patulin accumulation in stored apples. Phytopathology 95:1271–1278

    Article  CAS  Google Scholar 

  • Castoria R, Mannina L, Durán-Patrón R, Maffei F, Sobolev AP, De Felice DV, Pinedo-Rivilla C, Ritieni A, Ferracane R, Wright SAI (2011) Conversion of the mycotoxin patulin to the less toxic desoxypatulinic acid by the biocontrol yeast Rhodosporidium kratochvilovae strain LS11. J Agric Food Chem 59:11571–11578

    Article  CAS  Google Scholar 

  • Catalanotto C, Azzalin G, Macino G, Cogoni C (2002) Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora. Genes Dev 16:790–795

    Article  CAS  Google Scholar 

  • Chattoo BB, Sherman F, Azubalis DA, Fjellstedt TA, Mehnert D, Ogur M (1979) Selection of lys2 mutants of the yeast Saccharomyces cerevisiae by the utilization of α-aminoadipate. Genetics 93:51–65

    CAS  Google Scholar 

  • Coelho MA, Sampaio JP, Gonçalves P (2010) A deviation from the bipolar-tetrapolar mating paradigm in an early diverged basidiomycete. PLoS Genet 6:e1001052

    Article  Google Scholar 

  • Covert SF, Kapoor P, Lee M-H, Briley A, Nairn CJ (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res 105:259–264

    Article  CAS  Google Scholar 

  • Davidson RC, Blankenship JR, Kraus PR, de Jesus BM, Hull CM, D’Souza C, Wang P, Heitman J (2002) A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148:2607–2615

    CAS  Google Scholar 

  • Edman JC (1992) Isolation of telomere-like sequences from Cryptococcus neoformans and their use in high-efficiency transformation. Mol Cell Biol 12:2777–2783

    CAS  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    Article  CAS  Google Scholar 

  • Fraser JA, Lim SM, Diezmann S, Wenink EC, Arndt CG, Cox GM, Dietrich FS, Heitman J (2006) Yeast diversity sampling on the San Juan Islands reveals no evidence for the spread of the Vancouver Island Cryptococcus gattii outbreak to this locale. FEMS Yeast Res 6:620–624

    Article  CAS  Google Scholar 

  • Hamamoto M, Sugiyama J, Komagata K (1986) DNA base composition of strains in the genera Rhodosporidium, Cystofilobasidium, and Rhodotorula determined by reverse-phase high performance liquid chromatograph. J Gen Appl Microbiol 32:215–223

    Article  CAS  Google Scholar 

  • Hood ME, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Ianiri G, Wright SAI, Castoria R, Idnurm A (2011) Development of resources for the analysis of gene function in Pucciniomycotina red yeasts. Fungal Genet Biol 48:685–695

    Article  CAS  Google Scholar 

  • Idnurm A, Reedy JL, Nussbaum JC, Heitman J (2004) Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot Cell 3:420–429

    Article  CAS  Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892

    Article  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  Google Scholar 

  • Klassen JL (2010) Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics. PLoS One 5:e11257

    Article  Google Scholar 

  • Krügel H, Fiedler G, Smith C, Baumberg S (1993) Sequence and transcriptional analysis of the nourseothricin acetyltransferase-encoding gene nat1 from Streptomyces noursei. Gene 127:127–131

    Article  Google Scholar 

  • Lawrence GJ, Dodds PN, Ellis JG (2010) Transformation of the flax rust fungus, Melampsora lini: selection via silencing of an avirulence gene. Plant J 61:364–369

    Article  CAS  Google Scholar 

  • Lima G, Spina AM, Castoria R, De Curtis F, De Cicco V (2005) Integration of biocontrol agents and food-grade additives for enhancing protection of stored apples from Penicillium expansum. J Food Prot 68:2100–2106

    CAS  Google Scholar 

  • Liu Y, Koh CMJ, Sun L, Hlaing MM, Du M, Peng N, Ji L (2012) Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4223-9.

  • Marchand G, Fortier E, Neveu B, Bolduc S, Belzile F, Bélanger RR (2007) Alternative methods for genetic transformation of Pseudozyma antarctica, a basidiomycetous yeast-like fungus. J Microbiol Methods 70:519–527

    Article  CAS  Google Scholar 

  • McClelland CM, Chang YC, Kwon-Chung KJ (2005) High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens. Fungal Genet Biol 42:904–913

    Article  CAS  Google Scholar 

  • McCluskey K, Wiest A, Plamann M (2010) The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research. J Biosci 35:119–126

    Article  CAS  Google Scholar 

  • McCluskey K, Wiest A (2011) The Fungal Genetics Stock Center in the context of a world wide community of ex situ fungal germplasm repositories. Fungal Biol Rev 25:143–150

    Article  Google Scholar 

  • Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353

    Article  CAS  Google Scholar 

  • Sampaio JP, Gadanho M, Santos S, Duarte FL, Pais C, Fonseca A, Fell JW (2001) Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: Rhodosporidium kratochvilovae and related anamorphic species. Int J Syst Evol Microbiol 51:687–697

    CAS  Google Scholar 

  • Toffaletti DL, Rude TH, Johnston SA, Durack DT, Perfect JR (1993) Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175:1405–1411

    CAS  Google Scholar 

  • Toyn JH, Gunyuzlu PL, White WH, Thompson LA, Hollis GF (2000) A counterselection for the tryptophan pathway in yeast: 5-fluoroanthranilic acid resistance. Yeast 16:553–660

    Article  CAS  Google Scholar 

  • Tully M, Gilbert HJ (1985) Transformation of Rhodosporidium toruloides. Gene 36:235–240

    Article  CAS  Google Scholar 

  • Tuon FF, Costa SF (2008) Rhodotorula infection. A systematic review of 128 cases from literature. Rev Iberoam Micol 25:135–140

    Article  Google Scholar 

  • Valério E, Gadanho M, Sampaio JP (2008) Reappraisal of the Sporobolomyces roseus species complex and description of Sporidiobolus metaroseus. Int J Syst Evol Microbiol 58:736–741

    Article  Google Scholar 

  • Walton FJ, Idnurm A, Heitman J (2005) Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 57:1381–1396

    Article  CAS  Google Scholar 

  • Wang X, Wang P, Sun S, Darwiche S, Idnurm A, Heitman J (2012) Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans. PLoS Genet 8:e1002885

    Article  CAS  Google Scholar 

  • Winston F, Dollard C, Ricupero-Hovasse SL (1995) Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55

    Article  CAS  Google Scholar 

  • Xin G, Glawe D, Doty SL (2009) Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycol Res 113:973–980

    Article  CAS  Google Scholar 

  • Yamazaki M, Komagata K (1983) An electrophoretic comparison of enzymes of ballistosporogenous yeasts. J Gen Appl Microbiol 29:115–143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Joseph Heitman, James Fraser, and the FGSC for providing strains. This research was supported by grants from the United States National Science Foundation (MCB-0920581), the Italian Ministry of Education, University and Scientific Research (PRIN 2008, 2008JKH2MM), and the Italian Ministry of Foreign Affairs (joint research project LS-7, within the executive programme of cooperation in the field of science and technology between Italy and USA 2008–2010). G. I. was also supported by a scholarship from the Department of Agricultural, Environmental and Food Sciences, University of Molise, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Idnurm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 216 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbott, E.P., Ianiri, G., Castoria, R. et al. Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts. Appl Microbiol Biotechnol 97, 283–295 (2013). https://doi.org/10.1007/s00253-012-4561-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4561-7

Keywords

Navigation