Skip to main content
Log in

Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes

  • Methods and Protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To facilitate transcription studies in Corynebacterium glutamicum, we have developed an in vitro transcription system for this bacterium used as an industrial producer of amino acids and a model organism for actinobacteria. This system consists of C. glutamicum RNA polymerase (RNAP) core (α2, β, β′), a sigma factor and a promoter-carrying DNA template, that is specifically recognized by the RNAP holoenzyme formed. The RNAP core was purified from the C. glutamicum strain with the modified rpoC gene, which produced His-tagged β′ subunit. The C. glutamicum sigA and sigH genes were cloned and overexpressed using the Escherichia coli plasmid vector, and the sigma subunits σA and σH were purified by affinity chromatography. Using the reconstituted C. glutamicum holo-RNAPs, recognition of the σA- and σH-dependent promoters and synthesis of the specific transcripts was demonstrated. The developed in vitro transcription system is a novel tool that can be used to directly prove the specific recognition of a promoter by the particular σ factor(s) and to analyze transcriptional control by various regulatory proteins in C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Artsimovitch I, Landick R (2000) Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc Natl Acad Sci USA 97:7090–7095

    Article  CAS  Google Scholar 

  • Barreiro C, Gonzalez-Lavado E, Pátek M, Martín JF (2004) Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters. J Bacteriol 186:4813–4817

    Article  CAS  Google Scholar 

  • Dainese E, Rodrigue S, Delogu G, Provvedi R, Laflamme L, Brzezinski R, Fadda G, Smith I, Gaudreau L, Palu G, Manganelli R (2006) Posttranslational regulation of Mycobacterium tuberculosis extracytoplasmic-function sigma factor σL and roles in virulence and in global regulation of gene expression. Infect Immun 74:2457–2461

    Article  CAS  Google Scholar 

  • Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H (2008) Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl Environ Microbiol 74:5146–5152

    Article  CAS  Google Scholar 

  • Ehira S, Teramoto H, Inui M, Yukawa H (2009) Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol 191:2964–2972

    Article  CAS  Google Scholar 

  • Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σH. Mol Microbiol 52:285–302

    Article  CAS  Google Scholar 

  • Fujita M, Sagara Y, Aramaki H (2000) In vitro transcription system using reconstituted RNA polymerase (Eσ70, EσH, EσE and EσS) of Pseudomonas aeruginosa. FEMS Microbiol Lett 183:253–257

    CAS  Google Scholar 

  • Halgasova N, Bukovska G, Timko J, Kormanec J (2001) Cloning and transcriptional characterization of two sigma factor genes, sigA and sigB, from Brevibacterium flavum. Curr Microbiol 43:249–254

    Article  CAS  Google Scholar 

  • Halgasova N, Bukovska G, Ugorcakova J, Timko J, Kormanec J (2002) The Brevibacterium flavum sigma factor SigB has a role in the environmental stress response. FEMS Microbiol Lett 216:77–84

    Article  CAS  Google Scholar 

  • Hammer K, Mijakovic I, Jensen PR (2006) Synthetic promoter libraries—tuning of gene expression. Trends Biotechnol 24:53–55

    Article  CAS  Google Scholar 

  • Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning. A practical aproach, Vol. 1. IRL, Oxford, UK, pp 109–135

  • Holátko J, Elišáková V, Prouza M, Sobotka M, Nešvera J, Pátek M (2009) Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139:203–210

    Article  Google Scholar 

  • Huang X, Fredrick KL, Helmann JD (1998) Promoter recognition by Bacillus subtilis σW: autoregulation and partial overlap with the σX regulon. J Bacteriol 180:3765–3770

    CAS  Google Scholar 

  • Jacques JF, Rodrigue S, Brzezinski R, Gaudreau L (2006) A recombinant Mycobacterium tuberculosis in vitro transcription system. FEMS Microbiol Lett 255:140–147

    Article  CAS  Google Scholar 

  • Jäger W, Schäfer A, Pühler A, Labes G, Wohlleben W (1992) Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol 174:5462–5465

    Google Scholar 

  • Kim TH, Kim HJ, Park JS, Kim Y, Kim P, Lee HS (2005) Functional analysis of sigH expression in Corynebacterium glutamicum. Biochem Biophys Res Commun 331:1542–1547

    Article  CAS  Google Scholar 

  • Kind S, Jeong WK, Schroder H, Wittmann C (2010) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12:341–351

    Article  CAS  Google Scholar 

  • Krásný L, Gourse RL (2004) An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J 23:4473–4483

    Article  Google Scholar 

  • Larisch C, Nakunst D, Hüser AT, Tauch A, Kalinowski J (2007) The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genomics 8:4

    Article  Google Scholar 

  • Liao CT, Wen YD, Wang WH, Chang BY (1999) Identification and characterization of a stress-responsive promoter in the macromolecular synthesis operon of Bacillus subtilis. Mol Microbiol 33:377–388

    Article  CAS  Google Scholar 

  • Mascher T, Hachmann AB, Helmann JD (2007) Regulatory overlap and functional redundancy among Bacillus subtilis extracytoplasmic function sigma factors. J Bacteriol 189:6919–6927

    Article  CAS  Google Scholar 

  • Mathew R, Chatterji D (2006) The evolving story of the omega subunit of bacterial RNA polymerase. Trends Microbiol 14:450–455

    Article  CAS  Google Scholar 

  • Nakunst D, Larisch C, Hüser AT, Tauch A, Pühler A, Kalinowski J (2007) The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J Bacteriol 189:4696–4707

    Article  CAS  Google Scholar 

  • Nešvera J, Pátek M (2011) Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 90:1641–1654

    Article  Google Scholar 

  • Nešvera J, Pátek M, Hochmannová J, Abrhámová Z, Bečvářová V, Jelínková M, Vohradský J (1997) Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 179:1525–1532

    Google Scholar 

  • Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS (2008) Corynebacterium glutamicum σE is involved in responses to cell surface stresses and its activity is controlled by the anti-σ factor CseE. Microbiology 154:915–923

    Article  CAS  Google Scholar 

  • Pátek M, Nešvera J (2011) Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol 154:101–113

    Article  Google Scholar 

  • Pátek M, Nešvera J, Guyonvarch A, Reyes O, Leblon G (2003) Promoters of Corynebacterium glutamicum. J Biotechnol 104:311–323

    Article  Google Scholar 

  • Qi Y, Hulett FM (1998) PhoP-P and RNA polymerase σA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol 28:1187–1197

    Article  CAS  Google Scholar 

  • Rodrigue S, Provvedi R, Jacques PE, Gaudreau L, Manganelli R (2006) The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 30:926–941

    Article  CAS  Google Scholar 

  • Ross W, Gourse RL (2009) Analysis of RNA polymerase–promoter complex formation. Methods 47:13–24

    Article  CAS  Google Scholar 

  • Ross W, Thompson JF, Newlands JT, Gourse RL (1990) E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J 9:3733–3742

    CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schröder J, Tauch A (2010) Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 34:685–737

    Google Scholar 

  • Sojka L, Kouba T, Barvík I, Šanderová H, Maderová Z, Jonák J, Krásný L (2011) Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res 39:4598–4611

    Article  CAS  Google Scholar 

  • Šotkovský P, Sklenář J, Halada P, Cinová J, Šetinová I, Kainarová A, Goliáš J, Pavlásková K, Honzová S, Tučková L (2011) A new approach to the isolation and characterization of wheat flour allergens. Clin Exp Allergy 41:1031–1043

    Article  Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  Google Scholar 

  • van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  Google Scholar 

  • Vrentas CE, Gaal T, Ross W, Ebright RH, Gourse RL (2005) Response of RNA polymerase to ppGpp requirement for the ω subunit and relief of this requirement by DksA. Genes Dev 19:2378–2387

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants 204/09/J015 and P302/12/P633 from the Czech Science Foundation and by Institutional Research Project RVO61388971. We thank Jiří Janata for critical reading of the manuscript.

Conflict of interests

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Pátek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holátko, J., Šilar, R., Rabatinová, A. et al. Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes. Appl Microbiol Biotechnol 96, 521–529 (2012). https://doi.org/10.1007/s00253-012-4336-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4336-1

Keywords

Navigation