Skip to main content

Advertisement

Log in

A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The knowledge about enzymes’ compartmentalization and transport processes involved in the penicillin biosynthesis in Penicillium chrysogenum is very limited. The genome of this fungus contains multiple genes encoding transporter proteins, but very little is known about them. A bioinformatic search was made to find major facilitator supefamily (MFS) membrane proteins related to CefP transporter protein involved in the entry of isopenicillin N to the peroxisome in Acremonium chrysogenum. No strict homologue of CefP was observed in P. chrysogenum, but the penV gene was found to encode a membrane protein that contained 10 clear transmembrane spanners and two other motifs COG5594 and DUF221, typical of membrane proteins. RNAi-mediated silencing of penV gene provoked a drastic reduction of the production of the δ-(l-α-aminoadipyl-l-cysteinyl-d-valine) (ACV) and isopenicillin N intermediates and the final product of the pathway. RT-PCR and northern blot analyses confirmed a reduction in the expression levels of the pcbC and penDE biosynthetic genes, whereas that of the pcbAB gene increased. Localization studies by fluorescent laser scanning microscopy using Dsred and GFP fluorescent fusion proteins and the FM 4-64 fluorescent dye showed clearly that the protein was located in the vacuolar membrane. These results indicate that PenV participates in the first stage of the beta-lactam biosynthesis (i.e., the formation of the ACV tripeptide), probably taking part in the supply of amino acids from the vacuolar lumen to the vacuole-anchored ACV synthetase. This is in agreement with several reports on the localization of the ACV synthetase and provides increased evidence for a compartmentalized storage of precursor amino acids for non-ribosomal peptides. PenV is the first MFS transporter of P. chrysogenum linked to the beta-lactam biosynthesis that has been located in the vacuolar membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aharonowitz Y, Cohen G, Martín JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46:461–495. doi:10.1146/annurev.mi.46.100192.002333

    Article  CAS  Google Scholar 

  • Álvarez E, Cantoral JM, Barredo JL, Díez B, Martín JF (1987) Purification to homogeneity and characterization of acyl coenzyme A:6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum. Antimicrob Agents Chemother 31:1675–1682. doi:10.1128/AAC.31.11.1675

    Article  Google Scholar 

  • Andrade AC, Van Nistelrooy JG, Peery RB, Skatrud PL, De Waard MA (2000) The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen Genet 263:966–977. doi:10.1007/PL00008697

    Article  CAS  Google Scholar 

  • Bañuelos O, Casqueiro J, Fierro F, Hijarrubia MJ, Gutierrez S, Martín JF (1999) Characterization and lysine control of expression of the lys1 gene of Penicillium chrysogenum encoding homocitrate synthase. Gene 226:51–59. doi:10.1016/S0378-1119(98)00551-4

    Article  Google Scholar 

  • Barredo JL, Cantoral JM, Álvarez E, Díez B, Martín JF (1989a) Cloning, sequence analysis and transcriptional study of the isopenicillin N synthase of Penicillium chrysogenum AS-P-78. Mol Gen Genet 216:91–98. doi:10.1007/BF00332235

    Article  CAS  Google Scholar 

  • Barredo JL, Díez B, Álvarez E, Martín JF (1989b) Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of Penicillium chrysogenum. Curr Genet 16:453–459. doi:10.1007/BF00340725

    Article  CAS  Google Scholar 

  • Barredo JL, van Solingen P, Díez B, Álvarez E, Cantoral JM, Kattevilder A, Smaal EB, Groenen MA, Veenstra AE, Martín JF (1989c) Cloning and characterization of the acyl-coenzyme A: 6-aminopenicillanic-acid-acyltransferase gene of Penicillium chrysogenum. Gene 83:291–300. doi:10.1016/0378-1119(89)90115-7

    Article  CAS  Google Scholar 

  • Benko PV, Wood TC, Segel IH (1969) Multiplicity and regulation of amino acid transport in Penicillium chrysogenum. Arch Biochem Biophys 129:498–508. doi:10.1016/0003-9861(69)90207-0

    Article  CAS  Google Scholar 

  • Cantoral JM, Díez B, Barredo JL, Álvarez E, Martín JF (1987) High-frequency transformation of Penicillium chrysogenum. Nat Biotechnol 5:494–497. doi:10.1038/nbt0587-494

    Article  CAS  Google Scholar 

  • Cardoza RE, Moralejo FJ, Gutiérrez S, Casqueiro J, Fierro F, Martín JF (1998) Characterization and nitrogen-source regulation at the transcriptional level of the gdhA gene of Aspergillus awamori encoding an NADP-dependent glutamate dehydrogenase. Curr Genet 34:50–59. doi:10.1007/s002940050365

    Article  CAS  Google Scholar 

  • Carr LG, Skatrud PL, Scheetz ME, Queener SW 2nd, Ingolia TD (1986) Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. Gene 48:257–266. doi:10.1016/0378-1119(86)90084-3

    Article  CAS  Google Scholar 

  • Casqueiro J, Gutierrez S, Bañuelos O, Hijarrubia MJ, Martín JF (1999) Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181:1181–1188

    CAS  Google Scholar 

  • Cole L, Orlovich DA, Ashford AE (1998) Structure, function, and motility of vacuoles in filamentous fungi. Fungal Genet Biol 24:86–100. doi:10.1006/fgbi.1998.1051

    Article  Google Scholar 

  • Demain AL, Elander RP (1999) The beta-lactam antibiotics: past, present, and future. Antonie Van Leeuwenhoek 75:5–19. doi:10.1023/A:1001738823146

    Article  CAS  Google Scholar 

  • Díez B, Gutierrez S, Barredo JL, van Solingen P, van der Voort LH, Martín JF (1990) The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the alpha-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and penDE genes. J Biol Chem 265:16358–16365

    Google Scholar 

  • Evers ME, Trip H, van den Berg MA, Bovenberg RA, Driessen AJ (2004) Compartmentalization and transport in beta-lactam antibiotics biosynthesis. Adv Biochem Eng Biotechnol 88:111–135. doi:10.1007/b99259

    CAS  Google Scholar 

  • Fierro F, Barredo JL, Díez B, Gutiérrez S, Fernández FJ, Martín JF (1995) The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92:6200–6204. doi:10.1016/j.fgb.2006.03.001

    Article  CAS  Google Scholar 

  • Fierro F, García-Estrada C, Castillo NI, Rodriguez R, Velasco-Conde T, Martín JF (2006) Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fungal Genet Biol 43:618–629. doi:10.1016/j.fgb.2006.03.001

    Article  CAS  Google Scholar 

  • Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259. doi:10.1046/j.1365-2818.2000.00708

    Article  CAS  Google Scholar 

  • García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MA, Durek P, von Dohren H, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512. doi:10.1016/j.chembiol.2011.08.012

    Article  Google Scholar 

  • Gutiérrez S, Velasco J, Marcos AT, Fernández FJ, Fierro F, Barredo JL, Díez B, Martín JF (1997) Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl Microbiol Biotechnol 48:606–614. doi:10.1007/s002530051103

    Article  Google Scholar 

  • Honlinger C, Kubicek CP (1989) Regulation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N biosynthesis in Penicillium chrysogenum by the alpha-aminoadipate pool size. FEMS Microbiol Lett 53:71–75

    Article  CAS  Google Scholar 

  • Hoppert M, Gentzsch C, Schorgendorfer K (2001) Structure and localization of cyclosporin synthetase, the key enzyme of cyclosporin biosynthesis in Tolypocladium inflatum. Arch Microbiol 176:285–293. doi:10.1007/s002030100324

    Article  CAS  Google Scholar 

  • Hunter DR, Segel IH (1971) Acidic and basic amino acid transport systems of Penicillium chrysogenum. Arch Biochem Biophys 144:168–183. doi:10.1016/0003-9861(71)90466-8

    Article  CAS  Google Scholar 

  • Jack DL, Paulsen IT, Saier MH (2000) The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146(Pt 8):1797–1814

    CAS  Google Scholar 

  • Jami MS, Barreiro C, García-Estrada C, Martín JF (2010a) Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement. Mol Cell Proteomics 9:1182–1198. doi:10.1074/mcp.M900327-MCP200

    Article  CAS  Google Scholar 

  • Jami MS, García-Estrada C, Barreiro C, Cuadrado AA, Salehi-Najafabadi Z, Martín JF (2010b) The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol Cell Proteomics 9:2729–2744. doi:10.1074/mcp.M110.001412

    Article  CAS  Google Scholar 

  • Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54:266–292

    CAS  Google Scholar 

  • Koetsier MJ, Jekel PA, van den Berg MA, Bovenberg RA, Janssen DB (2009) Characterization of a phenylacetate-CoA ligase from Penicillium chrysogenum. Biochem J 417:467–476. doi:10.1042/BJ20081257

    Article  CAS  Google Scholar 

  • Kosalkova K, García-Estrada C, Ullán RV, Godio RP, Feltrer R, Teijeira F, Mauriz E, Martín JF (2009) The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91:214–225. doi:10.1016/j.biochi.2008.09.004

    Article  CAS  Google Scholar 

  • Kurylowicz W, Kurzatkowski W, Kurzatkowski J (1987) Biosynthesis of benzylpenicillin by Penicillium chrysogenum and its Golgi apparatus. Arch Immunol Ther Exp (Warsz) 35:699–724

    Google Scholar 

  • Laich F, Fierro F, Cardoza RE, Martín JF (1999) Organization of the gene cluster for biosynthesis of penicillin in Penicillium nalgiovense and antibiotic production in cured dry sausages. Appl Environ Microbiol 65:1236–1240

    CAS  Google Scholar 

  • Laich F, Fierro F, Martín JF (2002) Production of penicillin by fungi growing on food products: identification of a complete penicillin gene cluster in Penicillium griseofulvum and a truncated cluster in Penicillium verrucosum. Appl Environ Microbiol 68:1211–1219. doi:10.1128/AEM.68.3.1211-1219.2002

    Article  CAS  Google Scholar 

  • Lamas-Maceiras M, Vaca I, Rodríguez E, Casqueiro J, Martín JF (2006) Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase. Biochem J 395:147–155. doi:10.1042/BJ20051599

    Article  CAS  Google Scholar 

  • Lendenfeld T, Ghali D, Wolschek M, Kubicek-Pranz EM, Kubicek CP (1993) Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum. The amino acid precursors are derived from the vacuole. J Biol Chem 268:665–671

    CAS  Google Scholar 

  • Martín JF (2000) Alpha-aminoadipyl-cysteinyl-valine synthetases in beta-lactam producing organisms. From Abraham's discoveries to novel concepts of non-ribosomal peptide synthesis. J Antibiot (Tokyo) 53:1008–1021. doi:10.7164/antibiotics.53.100

    Article  Google Scholar 

  • Martín JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–293. doi:10.1016/j.mib.2005.04.009

    Article  Google Scholar 

  • Martín JF, Ullán RV, García-Estrada C (2010) Regulation and compartmentalization of beta-lactam biosynthesis. Microb Biotechnol 3:285–299. doi:10.1111/j.1751-7915.2009.00123.x

    Article  Google Scholar 

  • Martín JF, García-Estrada C, Ullán RV (2012) Genes encoding penicillin and cephalosporin biosynthesis in Acremonium chrysogenum: two separate clusters are required. In: Gupta VK, Ayyachamy M (eds) Biotechnology of fungal genes. Science, Enfield, pp 113–138

    Chapter  Google Scholar 

  • Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R, Bovenberg RA, van der Klei IJ (2010) Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol 76:5702–5709. doi:10.1128/AEM.02327-09

    Article  CAS  Google Scholar 

  • Minuth W, Tudzynski P, Esser K (1982) Extrachromosomal genetics of Cephalosporium acremonium. Curr Genet 5:227–231. doi:10.1007/BF00391811

    Article  CAS  Google Scholar 

  • Müller WH, van der Krift TP, Krouwer AJ, Wosten HA, van der Voort LH, Smaal EB, Verkleij AJ (1991) Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J 10:489–495

    Google Scholar 

  • Müller WH, Bovenberg RA, Groothuis MH, Kattevilder F, Smaal EB, Van der Voort LH, Verkleij AJ (1992) Involvement of microbodies in penicillin biosynthesis. Biochim Biophys Acta 1116:210–213. doi:10.1016/0304-4165(92)90118-E

    Article  Google Scholar 

  • Nijland JG, Kovalchuk A, van den Berg MA, Bovenberg RA, Driessen AJ (2008) Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal Genet Biol 45:1415–1421. doi:10.1016/j.fgb.2008.07.008

    Article  CAS  Google Scholar 

  • Paul GC, Thomas CR (1996) A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum. Biotechnol Bioeng 51:558–572. doi:10.1002/(SICI)1097-0290(19960905)51:5<558::AID-BIT8>3.0.CO;2-B

    Article  CAS  Google Scholar 

  • Ramos FR, López-Nieto MJ, Martín JF (1985) Isopenicillin N synthetase of Penicillium chrysogenum, an enzyme that converts delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N. Antimicrob Agents Chemother 27:380–387. doi:10.1128/AAC.27.3.380

    Article  CAS  Google Scholar 

  • Roach PL, Clifton IJ, Fulop V, Harlos K, Barton GJ, Hajdu J, Andersson I, Schofield CJ, Baldwin JE (1995) Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 375:700–704. doi:10.1038/375700a0

    Article  CAS  Google Scholar 

  • Roach PL, Clifton IJ, Hensgens CM, Shibata N, Schofield CJ, Hajdu J, Baldwin JE (1997) Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387:827–830. doi:10.1038/42990

    Article  CAS  Google Scholar 

  • Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353. doi:10.1111/j.1365-2958.1992.tb02202.x

    Article  CAS  Google Scholar 

  • Russnak R, Konczal D, McIntire SL (2001) A family of yeast proteins mediating bidirectional vacuolar amino acid transport. J Biol Chem 276:23849–23857. doi:10.1074/jbc.M008028200

    Article  CAS  Google Scholar 

  • Russo P, Li WZ, Hampsey DM, Zaret KS, Sherman F (1991) Distinct cis-acting signals enhance 3′ endpoint formation of cyc1 mRNA in the yeast Saccharomyces cerevisiae. EMBO J 10:563–571

    CAS  Google Scholar 

  • Smith DJ, Burnham MK, Edwards J, Earl AJ, Turner G (1990) Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillum chrysogenum. Biotechnology (N Y) 8:39–41. doi:10.1038/nbt0190-39

    Article  CAS  Google Scholar 

  • Teijeira F, Ullán RV, Guerra SM, García-Estrada C, Vaca I, Martín JF (2009) The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J 418:113–124. doi:10.1042/BJ20081180

    Article  CAS  Google Scholar 

  • Trip H, Evers ME, Konings WN, Driessen AJ (2002) Cloning and characterization of an aromatic amino acid and leucine permease of Penicillium chrysogenum. Biochim Biophys Acta 1565:73–80. doi:10.1016/S0005-2736(02)00510-2

    Article  CAS  Google Scholar 

  • Trip H, Evers ME, Kiel JA, Driessen AJ (2004) Uptake of the beta-lactam precursor alpha-aminoadipic acid in Penicillium chrysogenum is mediated by the acidic and the general amino acid permease. Appl Environ Microbiol 70:4775–4783. doi:10.1128/AEM.70.8.4775-4783.2004

    Article  CAS  Google Scholar 

  • Ullán RV, Casqueiro J, Bañuelos O, Fernández FJ, Gutierrez S, Martín JF (2002) A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J Biol Chem 277:46216–46225. doi:10.1074/jbc.M207482200

    Article  Google Scholar 

  • Ullán RV, Casqueiro J, Naranjo L, Vaca I, Martín JF (2004) Expression of cefD2 and the conversion of isopenicillin N into penicillin N by the two-component epimerase system are rate-limiting steps in cephalosporin biosynthesis. Mol Genet Genomics 272:562–570. doi:10.1007/s00438-004-1087-4

    Article  Google Scholar 

  • Ullán RV, Campoy S, Casqueiro J, Fernández FJ, Martín JF (2007) Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. Chem Biol 14:329–339. doi:10.1016/j.chembiol.2007.01.012

    Article  Google Scholar 

  • Ullán RV, Godio RP, Teijeira F, Vaca I, García-Estrada C, Feltrer R, Kosalkova K, Martín JF (2008a) RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using beta-lactam genes expression. J Microbiol Methods 75:209–218. doi:10.1016/j.mimet.2008.06.001

    Article  Google Scholar 

  • Ullán RV, Teijeira F, Martin JF (2008b) Expression of the Acremonium chrysogenum cefT gene in Penicillum chrysogenum indicates that it encodes an hydrophilic beta-lactam transporter. Curr Genet 54:153–161. doi:10.1007/s00294-008-0207-9

    Article  Google Scholar 

  • Ullán RV, Teijeira F, Guerra SM, Vaca I, Martín JF (2010) Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cephalosporin C. Biochem J 432:227–236. doi:10.1042/BJ20100827

    Article  Google Scholar 

  • van de Kamp M, Driessen AJ, Konings WN (1999) Compartmentalization and transport in beta-lactam antibiotic biosynthesis by filamentous fungi. Antonie Van Leeuwenhoek 75:41–78. doi:10.1023/A:1001775932202

    Article  Google Scholar 

  • van den Berg MA, Westerlaken I, Leeflang C, Kerkman R, Bovenberg RA (2007) Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255. Fungal Genet Biol 44:830–844. doi:10.1016/j.fgb.2007.03.008

    Article  Google Scholar 

  • van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, García-Estrada C, Fedorova ND, Harris DM, Heijne WH, Joardar V, Kiel JA, Kovalchuk A, Martin JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NN, Veenhuis M, von Dohren H, Wagner C, Wortman J, Bovenberg RA (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168. doi:10.1038/nbt.1498

    Article  CAS  Google Scholar 

  • van der Lende TR, van de Kamp M, Berg M, Sjollema K, Bovenberg RA, Veenhuis M, Konings WN, Driessen AJ (2002) Delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet Biol 37:49–55. doi:10.1016/S1087-1845(02)00036-1

    Article  Google Scholar 

  • Wang FQ, Liu J, Dai M, Ren ZH, Su CY, He JG (2007) Molecular cloning and functional identification of a novel phenylacetyl-CoA ligase gene from Penicillium chrysogenum. Biochem Biophys Res Commun 360:453–458. doi:10.1016/j.bbrc.2007.06.074

    Article  CAS  Google Scholar 

  • Young GB, Jack DL, Smith DW, Saier MH Jr (1999) The amino acid/auxin:proton symport permease family. Biochim Biophys Acta 1415:306–322

    Article  CAS  Google Scholar 

  • Yu ZL, Liu J, Wang FQ, Dai M, Zhao BH, He JG, Zhang H (2011) Cloning and characterization of a novel CoA-ligase gene from Penicillium chrysogenum. Folia Microbiol (Praha) 56:246–252. doi:10.1007/s12223-011-0044-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Marta Fernández-Aguado was supported by a grant for recent graduate researcher staff training program from the Junta de Castilla y León and co-financed by the European Social Fund [grant number Q2432001B]. We acknowledge the excellent technical assistance of A. Sánchez-Rodríguez, B. Martín, J. Merino, A. Casenave, and A. Mulero.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Ullán.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

(PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Aguado, M., Teijeira, F., Martín, J.F. et al. A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum . Appl Microbiol Biotechnol 97, 795–808 (2013). https://doi.org/10.1007/s00253-012-4256-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4256-0

Keywords

Navigation