Skip to main content
Log in

Microbial transformation of azaarenes and potential uses in pharmaceutical synthesis

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pyridine, quinoline, acridine, indole, carbazole, and other heterocyclic nitrogen-containing compounds (azaarenes) can be transformed by cultures of bacteria and fungi to produce a variety of new derivatives, many of which have biological activity. In many cases, the microbial biotransformation processes are regio- and stereoselective so that the transformation products may be useful for the synthesis of new candidate drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D’Alessandro U (2011) Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malaria J 10(144):1–12

    Google Scholar 

  • Agarwal A, Srivastava K, Puri SK, Chauhan PMS (2005) Synthesis of substituted indole derivatives as a new class of antimalarial agents. Bioorg Med Chem Lett 15:3133–3136

    Article  CAS  Google Scholar 

  • Ahmad F, Moat AG (1966) Nicotinic acid biosynthesis in prototrophs and tryptophan auxotrophs of Saccharomyces cerevisiae. J Biol Chem 241:775–780

    CAS  Google Scholar 

  • Ahmad S, Henderson K, Dunsday G, Zachariou M (2001) Microbial biotransformations: stereoselective synthesis of pharmaceutical drug precursors. Australas Biotechnol 11:26–28

    CAS  Google Scholar 

  • Aislabie J, Rothenburger S, Atlas RM (1989) Isolation of microorganisms capable of degrading isoquinoline under aerobic conditions. Appl Environ Microbiol 55:3247–3249

    CAS  Google Scholar 

  • Aislabie J, Bej AK, Hurst H, Rothenburger S, Atlas RM (1990) Microbial degradation of quinoline and methylquinolines. Appl Environ Microbiol 56:345–351

    CAS  Google Scholar 

  • Alarcón J, Cid E, Lillo L, Céspedes C, Aguila S, Alderete JB (2008) Biotransformation of indole derivatives by mycelial cultures. Z Naturforsch C 63:82–84

    Google Scholar 

  • Andries K, Verhasselt P, Guillemont J, Göhlmann HWH, Neefs J-M, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227

    Article  CAS  Google Scholar 

  • Araújo NCP, Barton V, Jones M, Stocks PA, Ward SA, Davies J, Bray PG, Shone AE, Cristiano MLS, O’Neill PM (2009) Semi-synthetic and synthetic 1,2,4-trioxaquines and 1,2,4-trioxolaquines: synthesis, preliminary SAR and comparison with acridine endoperoxide conjugates. Bioorg Med Chem Lett 19:2038–2043

    Article  CAS  Google Scholar 

  • Auparakkitanon S, Noonpakdee W, Ralph RK, Denny WA, Wilairat P (2003) Antimalarial 9-anilinoacridine compounds directed at hematin. Antimicrob Agents Chemother 47:3708–3712

    Article  CAS  Google Scholar 

  • Baird JK (2011) Resistance to chloroquine unhinges vivax malaria therapeutics. Antimicrob Agents Chemother 55:1827–1830

    Article  CAS  Google Scholar 

  • Banasik M, Komura H, Shimoyama M, Ueda K (1992) Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem 267:1569–1575

    CAS  Google Scholar 

  • Bianchi D, Bosetti A, Cidaria D, Bernardi A, Gagliardi I, D'Amico P (1997) Oxidation of polycyclic aromatic heterocycles by Pseudomonas fluorescens TTC1. Appl Microbiol Biotechnol 47:596–599

    Article  CAS  Google Scholar 

  • Biava M, Porretta GC, Poce G, Battilocchio C, Alfonso S, de Logu A, Manetti F, Botta M (2011) Developing pyrrole-derived antimycobacterial agents: a rational lead optimization approach. ChemMedChem 6:593–599

    Article  CAS  Google Scholar 

  • Boaventura MAD, Lopes RFAP, Takahashi JA (2004) Microorganisms as tools in modern chemistry: the biotransformation of 3-indolylacetonitrile and tryptamine by fungi. Braz J Microbiol 35:345–347

    Article  CAS  Google Scholar 

  • Boibessot I, Turner CMR, Watson DG, Goldie E, Connel G, McIntosh A, Grant MH, Skellern GG (2002) Metabolism and distribution of phenanthridine trypanocides in Trypanosoma brucei. Acta Trop 84:219–228

    Article  CAS  Google Scholar 

  • Bollag J-M, Kaiser J-P (1991) The transformation of heterocyclic aromatic compounds and their derivatives under anaerobic conditions. Crit Rev Environ Control 21:297–329

    Article  CAS  Google Scholar 

  • Bott G, Lingens F (1991) Microbial metabolism of quinoline and related compounds. IX. Degradation of 6-hydroxyquinoline and quinoline by Pseudomonas diminuta 31/1 Fa1 and Bacillus circulans 31/2 A1. Biol Chem Hoppe-Seyler 372:381–383

    Article  CAS  Google Scholar 

  • Boyd DR, McMordie RAS, Porter HP, Dalton H, Jenkins RO, Howarth OW (1987) Metabolism of bicyclic aza-arenes by Pseudomonas putida to yield vicinal cis-dihydrodiols and phenols. J Chem Soc Chem Commun 1987:1722–1724

    Article  Google Scholar 

  • Boyd DR, Sharma ND, Dorrity MRJ, Hand MV, McMordie RAS, Malone JF, Porter HP, Dalton H, Chima J, Sheldrake GN (1993) Structure and stereochemistry of cis-dihydro diol and phenol metabolites of bicyclic azaarenes from Pseudomonas putida UV4. J Chem Soc Perkin Trans 1:1065–1071

    Article  Google Scholar 

  • Boyd DR, Sharma ND, Modyanova LV, Carroll JG, Malone JF, Allen CCR, Hamilton JTG, Gibson DT, Parales RE, Dalton H (2002) Dioxygenase-catalyzed cis-dihydroxylation of pyridine-ring systems. Can J Chem 80:589–600

    Article  CAS  Google Scholar 

  • Bressler DC, Fedorak PM (2000) Bacterial metabolism of fluorene, dibenzofuran, dibenzothiophene, and carbazole. Can J Microbiol 46:397–409

    Article  CAS  Google Scholar 

  • Brocks DR, Mehvar R (2003) Stereoselectivity in the pharmacodynamics and pharmacokinetics of the chiral antimalarial drugs. Clin Pharmacokinet 42:1359–1382

    Article  CAS  Google Scholar 

  • Cao R, Peng W, Wang Z, Xu A (2007) β-Carboline alkaloids: biochemical and pharmacological functions. Curr Med Chem 14:479–500

    Article  CAS  Google Scholar 

  • Chauhan SS, Sharma M, Chauhan PMS (2010) Trioxaquines: hybrid molecules for the treatment of malaria. Drug News Perspect 23:632–646

    Article  CAS  Google Scholar 

  • Chen J, Dong X, Liu T, Lou J, Jiang C, Huang W, He Q, Yang B, Hua Y (2009) Design, synthesis, and quantitative structure–activity relationship of cytotoxic γ-carboline derivatives. Bioorg Med Chem 17:3324–3331

    Article  CAS  Google Scholar 

  • Clark AM, Hufford CD, Gupta RC, Puri RK, McChesney JD (1984a) Microbial transformation of primaquine by Candida tropicalis. Appl Environ Microbiol 47:537–539

    CAS  Google Scholar 

  • Clark AM, Hufford CD, Puri RK, McChesney JD (1984b) Production of a novel dimeric metabolite of primaquine by Streptomyces rimosus. Appl Environ Microbiol 47:540–543

    CAS  Google Scholar 

  • Coslédan F, Fraisse L, Pellet A, Guillou F, Mordmüller B, Kremsner PG, Moreno A, Mazier D, Maffrand J-P, Meunier B (2008) Selection of a trioxaquine as an antimalarial drug candidate. Proc Nat Acad Sci USA 105:17579–17584

    Article  Google Scholar 

  • Cui M, Chen F, Fu J, Sheng G, Sun G (2004) Microbial metabolism of quinoline by Comamonas sp. World J Microbiol Biotechnol 20:539–543

    Article  CAS  Google Scholar 

  • Deretic V, Pagán-Ramos E, Zhang Y, Dhandayuthapani S, Via LE (1996) The extreme sensitivity of Mycobacterium tuberculosis to the front-line antituberculosis drug isoniazid. Nature Biotechnol 14:1557–1561

    Article  CAS  Google Scholar 

  • Dovgilevich EV, Parshikov IA, Modyanova LV, Terent’ev PB, Bulakhov GA (1991) A novel microbial transformation of γ-carboline derivative 3,6-dimethyl-9-[2-(2-methylpyrid-5-yl)ethyl]-1,2,3,4-tetrahydro-γ-carboline. Mendeleev Commun 1:42–43

    Article  Google Scholar 

  • Duran N, De Conti R, Rodrigues JAR (2000) Biotransformations by microorganisms, organisms and enzymes: state of art. Bol Soc Chil Quím 45:109–121

    Article  CAS  Google Scholar 

  • Durão V, Rico JMGT (1977) Modification by indomethacin of the blood pressure lowering effect of pindolol and propranolol in conscious rabbits. Eur J Pharmacol 43:377–381

    Article  Google Scholar 

  • Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222:167–169

    Article  CAS  Google Scholar 

  • Faber K (2011) Biotransformations in organic chemistry: a textbook, 6th edn. Springer, Berlin, 434 p

    Book  Google Scholar 

  • Fetzner S (1998) Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl Microbiol Biotechnol 49:237–250

    Article  CAS  Google Scholar 

  • Fetzner S, Tshisuaka B, Lingens F, Kappl R, Hüttermann J (1998) Bacterial degradation of quinoline and derivatives—pathways and their biocatalysts. Angew Chem Int Ed 37:576–597

    Article  CAS  Google Scholar 

  • Gatti D, Adami S (1999) New bisphosphonates in the treatment of bone diseases. Drugs Aging 15:285–296

    Article  CAS  Google Scholar 

  • Ge J-F, Arai C, Yang M, Md AB, Lu J, Ismail NSM, Wittlin S, Kaiser M, Brun R, Charman SA, Nguyen T, Morizzi J, Itoh I, Ihara M (2010) Discovery of novel benzo[a]phenoxazine SSJ-183 as a drug candidate for malaria. ACS Med Chem Lett 1:360–364

    Article  CAS  Google Scholar 

  • Gieg LM, Otter A, Fedorak PM (1996) Carbazole degradation by Pseudomonas sp. LD2: metabolic characteristics and the identification of some metabolites. Environ Sci Technol 30:575–585

    Article  CAS  Google Scholar 

  • Gomtsyan A, Bayburt EK, Schmidt RG, Zheng GZ, Perner RJ, Didomenico S, Koenig JR, Turner S, Jinkerson T, Drizin I, Hannick SM, Macri BS, McDonald HA, Honore P, Wismer CT, Marsh KC, Wetter J, Stewart KD, Oie T, Jarvis MF, Surowy CS, Faltynek CR, Lee C-H (2005) Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: structure–activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties. J Med Chem 48:744–752

    Article  CAS  Google Scholar 

  • Grant DJW, Al-Najjar TR (1976) Degradation of quinoline by a soil bacterium. Microbios 15:177–189

    CAS  Google Scholar 

  • Grogan GJ, Holland HL (2000) The biocatalytic reactions of Beauveria spp. J Mol Catal B Enzym 9:1–32

    Article  CAS  Google Scholar 

  • Guetzoyan L, Yu X-M, Ramiandrasoa F, Pethe S, Rogier C, Pradines B, Cresteil T, Perrée-Fauvet M, Mahy J-P (2009) Antimalarial acridines: synthesis, in vitro activity against P. falciparum and interaction with hematin. Bioorg Med Chem 17:8032–8039

    Article  CAS  Google Scholar 

  • Hill JC, Johnson GT (1969) Microbial transformation of phenazines by Aspergillus sclerotiorum. Mycologia 61:452–467

    Article  CAS  Google Scholar 

  • Hüttel W, Hoffmeister D (2010) Fungal biotransformations in pharmaceutical sciences. In: Hofrichter M (ed) The Mycota, vol. 10. Industrial applications. Springer, Berlin, pp 293–317

    Google Scholar 

  • Inoue K, Habe H, Yamane H, Nojiri H (2006) Characterization of novel carbazole catabolism genes from Gram-positive carbazole degrader Nocardioides aromaticivorans IC177. Appl Environ Microbiol 72:3321–3329

    Article  CAS  Google Scholar 

  • Johansen SS, Licht D, Arvin E, Mosbaek H, Hansen AB (1997) Metabolic pathways of quinoline, indole and their methylated analogs by Desulfobacterium indolicum (DSM 3383). Appl Microbiol Biotechnol 47:292–300

    Article  CAS  Google Scholar 

  • Jones M, Mercer AE, Stocks PA, La Pensée LJ, Cosstick R, Park BK, Kennedy ME, Piantanida I, Ward SA, Davies J, Bray PG, Rawe SL, Baird J, Charidza T, Janneh O, O'Neill PM (2009) Antitumour and antimalarial activity of artemisinin–acridine hybrids. Bioorg Med Chem Lett 19:2033–2037

    Article  CAS  Google Scholar 

  • Kaiser J-P, Feng Y, Bollag J-M (1996) Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiol Rev 60:483–498

    CAS  Google Scholar 

  • Kalkanidis M, Klonis N, Tilley L, Deady LW (2002) Novel phenothiazine antimalarials: synthesis, antimalarial activity, and inhibition of the formation of beta-haematin. Biochem Pharmacol 63:833–842

    Article  CAS  Google Scholar 

  • Kamath AV, Vaidyanathan CS (1990) New pathway for the biodegradation of indole in Aspergillus niger. Appl Environ Microbiol 56:275–280

    CAS  Google Scholar 

  • Kaur K, Jain M, Kaur T, Jain R (2009) Antimalarials from nature. Bioorg Med Chem 17:3229–3256

    Article  CAS  Google Scholar 

  • Kaur K, Jain M, Reddy RP, Jain R (2010) Quinolines and structurally related heterocycles as antimalarials. Eur J Med Chem 45:3245–3264

    Article  CAS  Google Scholar 

  • Kelly SL, Lamb DC, Jackson CJ, Warrilow AGS, Kelly DE (2003) The biodiversity of microbial cytochromes P450. Adv Microb Physiol 47:131–186

    Article  CAS  Google Scholar 

  • Kiener A (1992) Enzymatic oxidation of methyl groups on aromatic heterocycles: a versatile method for the preparation of heteroaromatic carboxylic acids. Angew Chem Int Ed Engl 31:774–775

    Article  Google Scholar 

  • Kilbane JJ, Ranganathan R, Cleveland L, Kayser KJ, Ribiero C, Linhares MM (2000) Selective removal of nitrogen from quinoline and petroleum by Pseudomonas ayucida IGTN9m. Appl Environ Microbiol 66:688–693

    Article  CAS  Google Scholar 

  • Knölker H-J, Reddy KR (2008) Biological and pharmacological activities of carbazole alkaloids. In: Cordell GA (ed) The alkaloids: chemistry and biology. Vol. 65. Academic, London, pp 181–193

    Chapter  Google Scholar 

  • Kontnik R, Clardy J (2008) Codinaeopsin, an antimalarial fungal polyketide. Org Lett 10:4149–4151

    Article  CAS  Google Scholar 

  • Kost AN, Modyanova LV (1979) Microbiological transformation of pyridine derivatives. Khim Geterotsikl Soed 10:1299–1313

    Google Scholar 

  • Kumar S, Das SK, Dey S, Maity P, Guha M, Choubey V, Panda G, Bandyopadhyay U (2008) Antiplasmodial activity of [(aryl)arylsulfanylmethyl]pyridine. Antimicrob Agents Chemother 52:705–715

    Article  CAS  Google Scholar 

  • Kurnasov O, Jablonski L, Polanuyer B, Dorrestein P, Begley T, Osterman A (2003) Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol Lett 227:219–227

    Article  CAS  Google Scholar 

  • Larentis AL, Sampaio HCC, Carneiro CC, Martins OB, Alves TLM (2011) Evaluation of growth, carbazole biodegradation and anthranilic acid production by Pseudomonas stutzeri. Braz J Chem Eng 28:37–44

    Article  CAS  Google Scholar 

  • Lee JJ, Yoon J-H, Yang S-Y, Lee S-T (2006) Aerobic biodegradation of 4-methylpyridine and 4-ethylpyridine by newly isolated Pseudonocardia sp. strain M43. FEMS Microbiol Lett 254:95–100

    Article  CAS  Google Scholar 

  • Lehman LR, Stewart JD (2001) Filamentous fungi: potentially useful catalysts for the biohydroxylations of non-activated carbon centers. Curr Org Chem 5:439–470

    Article  CAS  Google Scholar 

  • Li P, Tong L, Liu K, Wang Y, Wang Y (2009) Indole degrading of ammonia oxidizing bacteria isolated from swine wastewater treatment system. Water Sci Technol 59:2405–2410

    Article  CAS  Google Scholar 

  • Licht D, Johansen SS, Arvin E, Ahring BK (1997) Transformation of indole and quinoline by Desulfobacterium indolicum (DSM 3383). Appl Microbiol Biotechnol 47:167–172

    Article  CAS  Google Scholar 

  • Lima WC, Varani AM, Menck CFM (2009) NAD biosynthesis evolution in bacteria: lateral gene transfer of kynurenine pathway in Xanthomonadales and Flavobacteriales. Mol Biol Evol 26:399–406

    Article  CAS  Google Scholar 

  • Lobastova TG, Sukhodolskaya GV, Nikolayeva VM, Baskunov BP, Turchin KF, Donova MV (2004) Hydroxylation of carbazoles by Aspergillus flavus VKM F-1024. FEMS Microbiol Lett 235:51–56

    Article  CAS  Google Scholar 

  • Modyanova LV, Vorobyeva LI, Shibilkina OK, Dovgilevich EV, Terentyev PB, Kost AN (1990) Microbial transformation of nitrogen-containing heterocyclic compounds. I. Hydroxylation of isomeric methyl- and dimethylpyridines by microscopic fungi. Biotekhnologiya 1990(3):24–27

    Google Scholar 

  • Mountfield RJ, Hopper DJ (1998) The formation of 1-hydroxymethylnaphthalene and 6-hydroxymethylquinoline by both oxidative and reductive routes in Cunninghamella elegans. Appl Microbiol Biotechnol 50:379–383

    Article  CAS  Google Scholar 

  • Müller R, Rappert S (2010) Pyrazines: occurrence, formation and biodegradation. Appl Microbiol Biotechnol 85:1315–1320

    Article  CAS  Google Scholar 

  • Muregi FW, Ishih A (2010) Next-generation antimalarial drugs: hybrid molecules as a new strategy in drug design. Drug Dev Res 71:20–32

    CAS  Google Scholar 

  • Neef G, Eder U, Petzoldt K, Seeger A, Wieglepp H (1982) Microbial hydroxylation of β-carboline derivatives. J Chem Soc Chem Commun 1982:366–367

    Article  Google Scholar 

  • Newton WA, Snell EE (1964) Catalytic properties of tryptophanase, a multifunctional pyridoxal phosphate enzyme. Proc Nat Acad Sci USA 51:382–389

    Article  CAS  Google Scholar 

  • Nojiri H, Habe H, Omori T (2001) Bacterial degradation of aromatic compounds via angular dioxygenation. J Gen Appl Microbiol 47:279–305

    Article  CAS  Google Scholar 

  • Obata H, Kawahara H, Sugiyama A (1997) Microbial transformation of carbazole to indole-3-acetic acid by Flavobacterium sp. OCM-1. Biosci Biotechnol Biochem 61:525–526

    Article  CAS  Google Scholar 

  • Oshima T, Kawai S, Egami F (1965) Oxidation of indole to indigotin by Pseudomonas indoloxidans. J Biochem 58:259–263

    CAS  Google Scholar 

  • Ouchiyama N, Zhang Y, Omori T, Kodama T (1993) Biodegradation of carbazole by Pseudomonas spp. CA06 and CA10. Biosci Biotechnol Biochem 57:455–460

    Article  CAS  Google Scholar 

  • Parshikov IA, Terent’ev PB, Modyanova LV, Duduchava MR, Dovgilevich EV, Butakov KA (1994a) Microbial transformations of 9-amino-1,2,3,4,5,6,7,8-octahydroacridine. Chem Heterocycl Comp 30:627–628

    Article  Google Scholar 

  • Parshikov IA, Terentyev PB, Modyanova LV (1994b) Microbial transformation of nitrogenous heterocycles. Khim Geterotsikl Soed 1994(11-12):1510–1535

    Google Scholar 

  • Parshikov IA, Freeman JP, Williams AJ, Moody JD, Sutherland JB (1999) Biotransformation of N-acetylphenothiazine by fungi. Appl Microbiol Biotechnol 52:553–557

    Article  CAS  Google Scholar 

  • Peters W (1999) The evolution of tafenoquine—antimalarial for a new millennium? J Roy Soc Med 92:345–352

    CAS  Google Scholar 

  • Petersen M, Kiener A (1999) Biocatalysis: preparation and functionalization of N-heterocycles. Green Chem 1:99–106

    Article  CAS  Google Scholar 

  • Prachayasittikul S, Treeratanapiboon L, Ruchirawat S, Prachayasittikul V (2009) Novel activities of 1-adamantylthiopyridines as antibacterials, antimalarials and anticancers. EXCLI J 8:121–129

    Google Scholar 

  • Prasad GS, Girisham S, Reddy SM (2009) Studies on microbial transformation of meloxicam by fungi. J Microbiol Biotechnol 19:922–931

    Article  CAS  Google Scholar 

  • Rajini KS, Aparna P, Sasikala C, Ramana CV (2011) Microbial metabolism of pyrazines. Crit Rev Microbiol 37:99–112

    Article  CAS  Google Scholar 

  • Ray L, Das Gupta C, Majumdar SK (1983) Microbiological reduction of quininone to quinidine. Appl Environ Microbiol 45:1935–1936

    CAS  Google Scholar 

  • Refaie FM, Esmat AY, Gawad SMA, Ibrahim AM, Mohamed MA (2005) The antihyperlipidemic activities of 4(3H)-quinazolinone and two halogenated derivatives in rats. Lipids Health Dis 4(22):1–11

    Google Scholar 

  • Ren D, Zhang X, Yan K, Yuan S, Lu X (2006) Studies on the degradation of indole using white rot fungus. Fresenius Environ Bull 15:1238–1243

    CAS  Google Scholar 

  • Resnick SM, Torok DS, Gibson DT (1993) Oxidation of carbazole to 3-hydroxycarbazole by naphthalene 1,2-dioxygenase and biphenyl 2,3-dioxygenase. FEMS Microbiol Lett 113:297–302

    Article  CAS  Google Scholar 

  • Rocco F (2003) Quinine: malaria and the quest for a cure that changed the world. Harper Collins, New York, 348 p

    Google Scholar 

  • Röger P, Erben A, Lingens F (1990) Microbial metabolism of quinoline and related compounds. IV. Degradation of isoquinoline by Alcaligenes faecalis Pa and Pseudomonas diminuta 7. Biol Chem Hoppe-Seyler 371:511–513

    Article  Google Scholar 

  • Rothenburger S, Atlas RM (1993) Hydroxylation and biodegradation of 6-methylquinoline by pseudomonads in aqueous and nonaqueous immobilized-cell bioreactors. Appl Environ Microbiol 59:2139–2144

    CAS  Google Scholar 

  • Rui L, Reardon KF, Wood TK (2005) Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl Microbiol Biotechnol 66:422–429

    Article  CAS  Google Scholar 

  • Saliba KJ, Kirk K (1998) Clotrimazole inhibits the growth of Plasmodium falciparum in vitro. Trans Roy Soc Trop Med Hyg 92:666–667

    Article  CAS  Google Scholar 

  • Sasikala C, Ramana CV, Rao PR (1994) Photometabolism of heterocyclic aromatic compounds by Rhodopseudomonas palustris OU 11. Appl Environ Microbiol 60:2187–2190

    CAS  Google Scholar 

  • Schwarz G, Bauder R, Speer M, Rommel TO, Lingens F (1989) Microbial metabolism of quinoline and related compounds. II. Degradation of quinoline by Pseudomonas fluorescens 3, Pseudomonas putida 86, and Rhodococcus spec. B1. Biol Chem Hoppe-Seyler 370:1183–1189

    Article  CAS  Google Scholar 

  • Secci D, Bolasco A, Chimenti P, Carradori S (2011) The state of the art of pyrazole derivatives as monoamine oxidase inhibitors and antidepressant/anticonvulsant agents. Curr Med Chem 18:5114–5144

    Article  CAS  Google Scholar 

  • Shibuya H, Kitamura C, Maehara S, Nagahata M, Winarno H, Simanjuntak P, Kim H-S, Wataya Y, Ohashi K (2003) Transformation of Cinchona alkaloids into 1-N-oxide derivatives by endophytic Xylaria sp. isolated from Cinchona pubescens. Chem Pharm Bull 51:71–74

    Article  CAS  Google Scholar 

  • Shukla OP (1984) Microbial transformation of pyridine compounds. Proc Ind Acad Sci Chem Sci 93:1143–1153

    CAS  Google Scholar 

  • Shukla OP (1986) Microbial transformation of quinoline by a Pseudomonas sp. Appl Environ Microbiol 51:1332–1342

    CAS  Google Scholar 

  • Shukla OP (1987) Microbiological transformation and biodegradation of quinoline: isolation and characterization of quinoline-degrading bacteria and identification of early intermediates. Biol Mem (Lucknow) 13:115–131

    CAS  Google Scholar 

  • Siebers-Wolff S, Arfmann H-A, Abraham W-R, Kieslich K (1993) Microbiological hydroxylation and N-oxidation of cinchona alkaloids. Biocatalysis 8:47–58

    Article  CAS  Google Scholar 

  • Stephan I, Tshisuaka B, Fetzner S, Lingens F (1996) Quinaldine 4-oxidase from Arthrobacter sp. Rü61a, a versatile prokaryotic molybdenum-containing hydroxylase active towards N-containing heterocyclic compounds and aromatic aldehydes. Eur J Biochem 236:155–162

    Article  CAS  Google Scholar 

  • Sutherland JB, Evans FE, Freeman JP, Williams AJ, Deck J, Cerniglia CE (1994a) Identification of metabolites produced from acridine by Cunninghamella elegans. Mycologia 86:117–120

    Article  CAS  Google Scholar 

  • Sutherland JB, Freeman JP, Williams AJ, Cerniglia CE (1994b) N-oxidation of quinoline and isoquinoline by Cunninghamella elegans. Exp Mycol 18:271–274

    Article  CAS  Google Scholar 

  • Sutherland JB, Evans FE, Freeman JP, Williams AJ (1996) Biotransformation of quinoxaline by Streptomyces badius. Lett Appl Microbiol 22:199–201

    Article  CAS  Google Scholar 

  • Sutherland JB, Freeman JP, Williams AJ (1998a) Biotransformation of isoquinoline, phenanthridine, phthalazine, quinazoline, and quinoxaline by Streptomyces viridosporus. Appl Microbiol Biotechnol 49:445–449

    Article  CAS  Google Scholar 

  • Sutherland JB, Freeman JP, Williams AJ, Deck J (1998b) Metabolism of cinnoline to N-oxidation products by Cunninghamella elegans and Aspergillus niger. J Ind Microbiol Biotechnol 21:225–227

    Article  CAS  Google Scholar 

  • Sutherland JB, Freeman JP, Williams AJ, Deck J (1999) Biotransformation of phthalazine by Fusarium moniliforme and Cunninghamella elegans. Mycologia 91:114–116

    Article  CAS  Google Scholar 

  • Sutherland JB, Freeman JP, Heinze TM, Moody JD, Parshikov IA, Williams AJ, Zhang D (2001) Oxidation of phenothiazine and phenoxazine by Cunninghamella elegans. Xenobiotica 31:799–809

    Article  CAS  Google Scholar 

  • Sutherland JB, Cross EL, Heinze TM, Freeman JP, Moody JD (2005) Fungal biotransformation of benzo[f]quinoline, benzo[h]quinoline, and phenanthridine. Appl Microbiol Biotechnol 67:405–411

    Article  CAS  Google Scholar 

  • Sutherland JB, Heinze TM, Pearce MG, Deck J, Williams AJ, Freeman JP (2009) Biotransformation of acridine by Mycobacterium vanbaalenii. Environ Toxicol Chem 28:61–64

    Article  CAS  Google Scholar 

  • Sutherland JB, Heinze TM, Schnackenberg LK, Freeman JP, Williams AJ (2011) Biotransformation of quinazoline and phthalazine by Aspergillus niger. J Biosci Bioeng 111:333–335

    Article  CAS  Google Scholar 

  • Taggart JV, Earle DP, Berliner RW, Welch WJ, Zubrod CG, Jailer JW, Kuhn BH, Norwood J, Shannon JA (1948) Studies on the chemotherapy of the human malarias. V. The antimalarial activity of quinacrine. J Clin Invest 27:93–97

    Article  CAS  Google Scholar 

  • Takayama T, Umemiya H, Amada H, Yabuuchi T, Shiozawa F, Katakai H, Takaoka A, Yamaguchi A, Endo M, Sato M (2010) Pyrrole derivatives as potent inhibitors of lymphocyte-specific kinase: structure, synthesis, and SAR. Bioorg Med Chem Lett 20:108–111

    Article  CAS  Google Scholar 

  • Teuscher G, Teuscher E (1965) 5-Hydroxyindole-3-acetic acid as a metabolic product of indole-3-acetic acid produced by ergot fungus. Phytochemistry 4:511–515

    Article  CAS  Google Scholar 

  • Vale N, Moreira R, Gomes P (2009) Primaquine revisited six decades after its discovery. Eur J Med Chem 44:937–953

    Article  CAS  Google Scholar 

  • Van Herwijnen R, de Graaf C, Govers HAJ, Parsons JR (2004) Estimation of kinetic parameter for the biotransformation of three-ring azaarenes by the phenanthrene-degrading strain Sphingomonas sp. LH128. Environ Toxicol Chem 23:331–338

    Article  Google Scholar 

  • Vickers S, Polsky SL (2000) The biotransformation of nitrogen containing xenobiotics to lactams. Curr Drug Metab 1:357–389

    Article  CAS  Google Scholar 

  • Vogels GD, van der Drift C (1976) Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev 40:403–468

    CAS  Google Scholar 

  • Vorobyeva LI, Parshikov IA, Dorre M, Dovgilevich EV, Modyanova LV, Terentyev PB, Nikishova NG (1990) Microbial transformations of nitrogen-containing heterocyclic compounds. II. Hydroxylation of ethylpyridines by microscopic fungi. Biotekhnologiya 1990(4):24–27

    Google Scholar 

  • Waldau D, Methling K, Mikolasch A, Schauer F (2009) Characterization of new oxidation products of 9H-carbazole and structure related compounds by biphenyl-utilizing bacteria. Appl Microbiol Biotechnol 81:1023–1031

    Article  CAS  Google Scholar 

  • Walsh JJ, Coughlan D, Heneghan N, Gaynor C, Bell A (2007) A novel artemisinin–quinine hybrid with potent antimalarial activity. Bioorg Med Chem Lett 17:3599–3602

    Article  CAS  Google Scholar 

  • Wang F, Langley R, Gulten G, Dover LG, Besra GS, Jacobs WR, Sacchettini JC (2007) Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204:73–78

    Article  CAS  Google Scholar 

  • Waring MJ, Wakelin LPG, Lee JS (1975) A solvent-partition method for measuring the binding of drugs to DNA. Application to the quinoxaline antibiotics echinomycin and triostin A. Biochim Biophys Acta 407:200–212

    Article  CAS  Google Scholar 

  • Watson GK, Houghton C, Cain RB (1974) Microbial metabolism of the pyridine ring. The hydroxylation of 4-hydroxypyridine to pyridine 3,4-diol (3,4-dihydroxypyridine) by 4-hydroxypyridine 3-hydroxylase. Biochem J 140:265–276

    CAS  Google Scholar 

  • Wieser M, Fujii N, Yoshida T, Nagasawa T (1998) Carbon dioxide fixation by reversible pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910. Eur J Biochem 257:495–499

    Article  CAS  Google Scholar 

  • Willumsen PA, Nielson JK, Karlson U (2001) Degradation of phenanthrene-analogue azaarenes by Mycobacterium gilvum strain LB307T under aerobic conditions. Appl Microbiol Biotechnol 56:539–544

    Article  CAS  Google Scholar 

  • Willumsen PA, Johansen JE, Karlson U, Hansen BM (2005) Isolation and taxonomic affiliation of N-heterocyclic aromatic hydrocarbon-transforming bacteria. Appl Microbiol Biotechnol 67:420–428

    Article  CAS  Google Scholar 

  • Yang W, Davis PJ (1992) Microbial models of mammalian metabolism: biotransformations of N-methylcarbazole using the fungus Cunninghamella echinulata. Drug Metab Dispos 20:38–46

    Google Scholar 

  • Yasuhara A, Akiba-Goto M, Fujishiro K, Uchida H, Uwajima T, Aisaka K (2002) Production of aldehyde oxidases by microorganisms and their enzymatic properties. J Biosci Bioeng 94:124–129

    Article  CAS  Google Scholar 

  • Yoshida T, Sada Y, Nagasawa T (2010) Bioconversion of 2,6-dimethylpyridine to 6-methylpicolinic acid by Exophiala dermatitidis (Kano) de Hoog DA5501 cells grown on n-dodecane. Appl Microbiol Biotechnol 86:1165–1170

    Article  CAS  Google Scholar 

  • Zefirov NS, Terentiev PB, Modyanova LV, Dovgilevich EV (1993) Regio- and stereoselective hydroxylation of some nitrogen heterocyclic compounds by microorganisms. Ind J Chem 32B:54–57

    CAS  Google Scholar 

  • Zefirov NS, Agapova SR, Terentiev PB, Bulakhova IM, Vasyukova NI, Modyanova LV (1994) Degradation of pyridine by Arthrobacter crystallopoietes and Rhodococcus opacus strains. FEMS Microbiol Lett 118:71–74

    Article  CAS  Google Scholar 

  • Zefirov NS, Agapova SR, Bulakhova IM, Terent’ev PB, Vasyukova NI, Modyanova LV (1995) Microbiological transformation of nitrogen-containing heterocyclic compounds. Izv Ross Akad Nauk Ser Biol 1995(3):367–371

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Carl E. Cerniglia (NCTR) for valuable comments on the manuscript and Dr. Vitaly Lashin (ACD/Labs, Moscow) for consultations in organic chemistry. The views presented in this article do not necessarily reflect those of the Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Sutherland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parshikov, I.A., Netrusov, A.I. & Sutherland, J.B. Microbial transformation of azaarenes and potential uses in pharmaceutical synthesis. Appl Microbiol Biotechnol 95, 871–889 (2012). https://doi.org/10.1007/s00253-012-4220-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4220-z

Keywords

Navigation