Skip to main content

Advertisement

Log in

Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Macroalgae are considered to be promising biomass for fuels and chemicals production. To utilize brown macroalgae as biomass, the degradation of alginate, which is the main carbohydrate of brown macroalgae, into monomeric units is a critical prerequisite step. Saccharophagus degradans 2-40 is capable of degrading more than ten different polysaccharides including alginate, and its genome sequence demonstrated that this bacterium contains several putative alginate lyase genes including alg17C. The gene for Alg17C, which is classified into the PL-17 family, was cloned and overexpressed in Escherichia coli. The recombinant Alg17C was found to preferentially act on oligoalginates with degrees of polymerization higher than 2 to produce the alginate monomer, 4-deoxy-l-erythro-5-hexoseulose uronic acid. The optimal pH and temperature for Alg17C were found to be 6 and 40 °C, respectively. The K M and V max of Alg17C were 35.2 mg/ml and 41.7 U/mg, respectively. Based on the results of this study, Alg17C could be used as the key enzyme to produce alginate monomers in the process of utilizing alginate for biofuels and chemicals production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21:569–574

    Article  CAS  Google Scholar 

  • Aizawa M, Asaoka K, Atsumi M, Sakou T (2007) Seaweed bioethanol production in Japan—the Ocean Sunrise Project. Oceans 1–5:345–349

    Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  • Gacesa P (1988) Alginates. Carbohydr Polym 8:161–182

    Article  CAS  Google Scholar 

  • Gacesa P, Wusteman FS (1990) Plate assay for simultaneous detection of alginate lyases and determination of substrate specificity. Appl Environ Microbiol 56:2265–2267

    CAS  Google Scholar 

  • Garron M-L, Cygler M (2010) Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 20:1547–1573

    Article  CAS  Google Scholar 

  • Ha SC, Lee S, Lee J, Kim HT, Ko H-J, Kim KH, Choi I-G (2011) Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochem Biophys Res Commun 412:238–244

    Article  CAS  Google Scholar 

  • Hashimoto W, Miyake O, Momma K, Kawai S, Murata K (2000) Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J Bacteriol 182:4572–4577

    Article  CAS  Google Scholar 

  • Hashimoto W, Yamasaki M, Itoh T, Momma K, Mikami B, Murata K (2004) Super-channel in bacteria: structural and functional aspects of a novel biosystem for the import and depolymerization of macromolecules. J Biosci Bioeng 98:399–413

    CAS  Google Scholar 

  • Haug A, Larsen B, Smidsrød O (1966) A study of constitution of alginic acid by partial acid hydrolysis. Acta Chem Scand 20:183–190

    Article  CAS  Google Scholar 

  • Hutcheson SW, Zhang H, Suvorov M (2011) Carbohydrase systems of Saccharophagus degradans degrading marine complex polysaccharides. Mar Drugs 9:645–665

    Article  CAS  Google Scholar 

  • Jensen A (1993) Present and future needs for algae and algal products. Hydrobiologia 260–261:15–23

    Article  Google Scholar 

  • Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223

    Article  CAS  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  Google Scholar 

  • Kim HT, Lee S, Lee D, Kim H-S, Bang W-G, Kim KH, Choi I-G (2010) Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type β-agarase producing neoagarobiose. Appl Microbiol Biotechnol 86:227–234

    Article  CAS  Google Scholar 

  • Ko JK, Jung MW, Kim KH, Choi I-G (2009) Optimal production of a novel endo-acting β-1,4-xylanase cloned from Saccharophagus degradans 2-40 into Escherichia coli BL21(DE3). New Biotechnol 26:157–164

    Article  CAS  Google Scholar 

  • Kobayashi T, Uchimura K, Miyazaki M, Nogi Y, Horikoshi K (2009) A new high-alkaline alginate lyase from a deep-sea bacterium Agarivorans sp. Extremophiles 13:121–129

    Article  CAS  Google Scholar 

  • Maki H, Mori A, Fujiyama K, Kinoshita S, Yoshida T (1993) Cloning, sequence analysis and expression in Escherichia coli of a gene encoding an alginate lyase from Pseudomonas sp. OS-ALG-9. J Gen Microbiol 139:987–993

    CAS  Google Scholar 

  • Matsubara Y, Iwasaki K, Muramatsu T (1998) Action of poly (α-l-guluronate)lyase from Corynebacterium sp. ALY-1 strain on saturated oligoguloronates. Biosci Biotechnol Biochem 62:1055–1060

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Miyake O, Hashimoto W, Murata K (2003) An exotype alginate lyase in Sphingomonas sp. Al: overexpression in Escherichia coli, purification, and characterization of alginate lyase IV (A1-IV). Protein Expr Purif 29:33–41

    Article  CAS  Google Scholar 

  • Ochiai A, Yamasaki M, Mikami B, Hashimoto W, Murata K (2010) Crystal structure of exotype alginate lyase Atu3025 from Agrobacterium tumefaciens. J Biol Chem 285:24519–24528

    Article  CAS  Google Scholar 

  • Preiss J, Ashwell G (1962) Alginic acid metabolism in bacteria II. The enzymatic reduction of 4-deoxy-l-erythro-5-hexoseulose uronic acid to 2-keto-3-deoxy-d-gluconic acid. J Biol Chem 237:317–321

    CAS  Google Scholar 

  • Sawabe T, Takahashi H, Ezura Y, Gacesa P (2001) Cloning, sequence analysis and expression of Pseudoalteromonas elyakovii IAM 14594 gene (alyPEEC) encoding the extracellular alginate lyase. Carbohydr Res 335:11–21

    Article  CAS  Google Scholar 

  • Shekharam KM, Venkataraman LV, Salimath PV (1987) Carbohydrate composition and characterization of two unusual sugars from the blue green alga, Spirulina platensis. Phytochemistry 26:2267–2269

    Article  CAS  Google Scholar 

  • Sim S-J, Baik KS, Park SC, Choe HN, Seong CN, Shin T-S, Woo HC, Cho J-Y, Kim D (in press) Characterization of alginate lyase gene using a metagenomic library constructed from the gut microflora of abalone. J Ind Microbiol Biotechnol. doi:10.1007/s10295-011-1054-0

  • Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102:26–34

    Article  CAS  Google Scholar 

  • Takase R, Ochiai A, Mikami B, Hashimoto W, Murata K (2010) Molecular identification of unsaturated uronate reductase prerequisite for alginate metabolism in Sphingomonas sp A1. Biochim Biophys Acta 1804:1925–1936

    CAS  Google Scholar 

  • Taylor LE II, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol 188:3849–3861

    Article  CAS  Google Scholar 

  • Weiner RM, Taylor LE II, Henrissat B, Hauser L, Land M, Coutinho PM, Rancurel C, Saunders EH, Longmire AG, Zhang H, Bayer EA, Gilbert HJ, Larimer F, Zhulin IB, Ekborg NA, Lamed R, Richardson PM, Borovok I, Hutcheson S (2008) Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40T. PLoS Genet 4:e1000087

    Article  Google Scholar 

  • Wong TY, Preston LA, Schiller NL (2000) Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54:289–340

    Article  CAS  Google Scholar 

  • Yun EJ, Shin MH, Yoon J-J, Kim YJ, Choi I-G, Kim KH (2011) Production of 3,6-anhydro-l-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40. Process Biochem 46:88–93

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry for Food, Agriculture, Forestry and Fisheries, Korea and also by the Pioneer Research Center Program (2011-0002327) funded by the Ministry of Education, Science and Technology, South Korea. Facility support by the Institute of Biomedical Sciences and Food Safety, Korea University, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Heon Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.20 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.T., Chung, J.H., Wang, D. et al. Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Appl Microbiol Biotechnol 93, 2233–2239 (2012). https://doi.org/10.1007/s00253-012-3882-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3882-x

Keywords

Navigation