Skip to main content
Log in

Poly(aspartate) hydrolases: biochemical properties and applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thermally synthesized poly(aspartate) (tPAA) shows potential for use in a wide variety of products and applications as a biodegradable replacement for non-biodegradable polycarboxylates, such as poly(acrylate). The tPAA molecule has unnatural structures, and the relationship between its biodegradability and structures has been investigated. Two tPAA-degrading bacteria, Sphingomonas sp. KT-1 and Pedobacter sp. KP-2, were isolated from river water; from them, two PAA-hydrolyzing enzymes, PAA hydrolases-1 and -2, were purified and biologically and genetically characterized. Interestingly, not only are PAA hydrolases-1 from those two strains novel in terms of structural genes and substrate specificities (they specifically cleave the amide bond between β-aspartate units in tPAA), they also probably play a central role in tPAA biodegradation by both strains. In green polymer chemistry, one active area of research is the use of purified enzymes for the enzyme-catalyzed synthesis of polypeptides by taking advantage of their substrate specificities. Recently, β-peptides have attracted academic and industrial interest as functional materials as they possess both functions of α-peptides and excellent metabolic stability. As one of the attractive applications of PAA hydrolases, we report here the enzyme-catalyzed synthesis of poly(α-ethyl β-aspartate), which is composed of only β-linkages and belongs to β-peptides, using the unique substrate specificity of the enzyme from Pedobacter sp. KP-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aso K, Uemura T, Shiokawa Y (1988) Protease-catalyzed synthesis of oligo-l-glutamic acid from l-glutamic acid diethyl ester. Agric Biol Chem 52:2443–2449

    CAS  Google Scholar 

  • Freeman MB, Paik YH, Swift G, Wilczynski R, Wolk SK, Yocom KM (1996) Biodegradability of polycarboxylates: structure–activity studies. In: Ottenbrite RM, Huang SJ, Park K (eds) Hydrogels and biodegradable polymers for bioapplications, ACS Symposium Series. American Chemical Society, Washington, pp 118–136

    Chapter  Google Scholar 

  • Guichard G (2004) β-Peptides, γ-peptides and isosteric backbones: new scaffolds with controlled shapes for mimicking protein secondary structure elements. In: Nielsen PE (ed) Pseudo-peptides in drug discovery. Wiley-VCH, Weinheim, pp 33–120

    Google Scholar 

  • Heck T, Kohler HPE, Limbach M, Flcgel O, Seebach D, Geueke B (2007) Enzyme-catalyzed formation of β-peptides: β-peptidyl aminopeptidases BapA and DmpA acting as β-peptide-synthesizing enzymes. Chem Biodiv 4:2016–2030

    Article  CAS  Google Scholar 

  • Hiraishi T, Taguchi S (2009) Enzyme-catalyzed synthesis and degradation of biopolymers. Mini-Rev Org Chem 6:44–54

    Article  CAS  Google Scholar 

  • Hiraishi T, Kajiyama M, Tabata K, Yamato I, Doi Y (2003a) Genetic analysis and characterization of poly(aspartic acid) hydrolase-1 from Sphingomonas sp. KT-1. Biomacromolecules 4:80–86

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi T, Kajiyama M, Tabata K, Abe H, Yamato I, Doi Y (2003b) Biochemical and molecular characterization of poly(aspartic acid) hydrolase-2 from Sphingomonas sp. KT-1. Biomacromolecules 4:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi T, Kajiyama M, Yamato I, Doi Y (2004) Enzymatic hydrolysis of α- and β-oligo(l-aspartic acid)s by poly(aspartic acid) hydrolases-1 and 2 from Sphingomonas sp. KT-1. Macromol Biosci 4:330–339

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi T, Masuda E, Kanayama N, Nagata M, Doi Y, Abe H, Maeda M (2009) Cloning of poly(aspartic acid) (PAA) hydrolase-1 gene from Pedobacter sp. KP-2 and hydrolysis of thermally synthesized PAA by its gene product. Macromol Biosci 9:10–19

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi T, Masuda E, Miyamoto D, Kanayama N, Abe H, Maeda M (2011) Enzymatic synthesis of poly(α-ethyl β-aspartate) by poly(ethylene glycol) modified poly(aspartate) hydrolase-1. Macromol Biosci 11:187–191

    Article  CAS  PubMed  Google Scholar 

  • Joentgen W, Müller N, Mitschker A, Schmidt H (2003) Polyaspartic acids: polyamides and complex proteinaceous materials I. In: Fahnestock SR, Steinbüchel A (eds) Biopolymers 7. Wiley-VCH, Weinheim, pp 175–199

    Google Scholar 

  • Kaplan DL, Dordick J, Gross RA, Swift G (1998) Enzymes in polymer science: an introduction. In: Gross RA, Kaplan DL, Swift G (eds) Enzymes in polymer synthesis, ACS Symposium Series 684. American Chemical Society, Washington, p 2

    Google Scholar 

  • Kawai F (1999) Sphingomonads involved in the biodegradation of xenobiotic polymers. J Ind Microbiol Biotechnol 23:400–407

    Article  CAS  PubMed  Google Scholar 

  • Kawai F (2010) The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms. Biosci Biotechnol Biochem 74:1743–1759

    Article  CAS  PubMed  Google Scholar 

  • Kricheldorf HR (2006) Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew Chem Int Ed 45:5752–5784

    Article  CAS  Google Scholar 

  • Li G, Vaidya A, Viswanathan K, Cui J, Xie W, Gao W, Gross RA (2006) Rapid regioselective oligomerization of l-glutamic acid diethyl ester catalyzed by papain. Macromolecules 39:7915–7921

    Article  CAS  Google Scholar 

  • Li G, Raman VK, Xie W, Gross RA (2008) Protease-catalyzed co-oligomerizations of l-leucine ethyl ester with l-glutamic acid diethyl ester: sequence and chain length distributions. Macromolecules 41:7003–7012

    Article  CAS  Google Scholar 

  • Low KC, Wheeler AP, Koskan LP (1996) Commercial poly(aspartic acid) and its uses. In: Glass J (ed) Hydrophilic polymers. Advances in Chemistry series. American Chemical Society, Washington, pp 99–111

    Chapter  Google Scholar 

  • Matsubara K, Nakato T, Tomida M (1998) End group and irregular structure analysis in thermally prepared sodium polyaspartate by 1H and 13C NMR spectroscopy. Macromolecules 31:1466–1472

    Article  CAS  Google Scholar 

  • Matsumura S, Tsushima Y, Otozawa N, Murakami S, Toshima K, Swift G (1999) Enzyme-catalyzed polymerization of l-aspartate. Macromol Rapid Commun 20:7–11

    Article  CAS  Google Scholar 

  • Nakato T, Yoshitake M, Matsubara K, Tomida M, Kakuchi T (1998) Relationships between structure and properties of poly(aspartic acid)s. Macromolecules 31:2107–2113

    Article  CAS  Google Scholar 

  • Obst M, Oppermann-Sanio FB, Luftmann H, Steinbüchel A (2002) Isolation of cyanophycin-degrading bacteria, cloning and characterization of an extracellular cyanophycinase gene (cphE) from Pseudomonas anguilliseptica strain BI. J Biol Chem 277:25096–25105

    Article  CAS  PubMed  Google Scholar 

  • Obst M, Sallam A, Luftmann H, Steinbüchel A (2004) Isolation and characterization of Gram-positive cyanophycin-degrading bacteria—kinetic studies on cyanophycin depolymerase activity in aerobic bacteria. Biomacromolecules 5:153–161

    Article  CAS  PubMed  Google Scholar 

  • Osada K, Christie RJ, Kataoka K (2009) Polymeric micelles from poly(ethylene glycol)–poly(amino acid) block copolymer for drug and gene delivery. J R Soc Interface 6:S325–S339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paik YH, Simon ES, Swift G (1996) A review of synthetic approaches to biodegradable polymeric carboxylic acids for detergent applications. In: Glass J (ed) Hydrophilic polymers. Advances in Chemistry series. American Chemical Society, Washington, pp 79–98

    Chapter  Google Scholar 

  • Pivcova H, Saudek V, Drobnik J, Vlasak J (1981) NMR study of poly(aspartic acid). I. α- and β-Peptide bonds in poly(aspartic acid) prepared by thermal polycondensation. Biopolymers 20:1605–1614

    Article  CAS  Google Scholar 

  • Pivcova H, Saudek V, Drobnik J (1982) 13C NMR study of the structure of poly(aspartic acid). Polymer 23:1237–1241

    Article  CAS  Google Scholar 

  • Richter R, Hejazi M, Kraft R, Ziegler K, Lockau W (1999) Cyanophycinase, a peptidase degrading the cyanobacterial reserve material multi-l-arginyl-poly-l-aspartic acid (cyanophycin). Eur J Biochem 263:163–169

    Article  CAS  PubMed  Google Scholar 

  • Ross RJ, Mazo GY, Mazo J (2001) New methods in the synthesis of thermal poly(aspartates). In: Gross R, Scholz C (eds) Biopolymers from polysaccharides and agroproteins, ACS Symposium Series. American Chemical Society, Washington, pp 172–181

    Chapter  Google Scholar 

  • Sallam A, Kast A, Przybilla S, Meiswinkel T, Steinbüchel A (2009) Biotechnological process for production of β-dipeptides from cyanophycin on a technical scale and its optimization. Appl Environ Microbiol 75:29–38

    Article  CAS  PubMed  Google Scholar 

  • Schwab LW, Baum I, Fels G, Loosa K (2010) Mechanistic insight in the enzymatic ring-opening polymerization of β-propiolactam. In: Cheng HN, Gross R (eds) Green polymer chemistry: biocatalysis and biomaterials, ACS Symposium Series. American Chemical Society, Washington, pp 265–278

    Chapter  Google Scholar 

  • Seebach D, Gardiner J (2008) β-Peptidic peptidomimetics. Acc Chem Res 41:1366–1375

    Article  CAS  PubMed  Google Scholar 

  • Seebach D, Beck AK, Bierbaum DJ (2004) The world of β- and γ-peptides comprised of homologated proteinogenic amino acids and other components. Chem Biodiversity 1:1111–1239

    Article  CAS  Google Scholar 

  • Soeda Y, Toshima K, Matsumura S (2003) Sustainable enzymatic preparation of polyaspartate using a bacterial protease. Biomacromolecules 4:196–203

    Article  CAS  PubMed  Google Scholar 

  • Tabata K, Kasuya K, Abe H, Masuda K, Doi Y (1999) Poly(aspartic acid) degradation by a Sphingomonas sp. isolated from freshwater. App Environ Microbiol 65:4268–4270

    Article  CAS  Google Scholar 

  • Tabata K, Abe H, Doi Y (2000) Microbial degradation of poly(aspartic acid) by two isolated strains of Pedobacter sp. and Sphingomonas sp. Biomacromolecules 1:157–161

    Article  CAS  PubMed  Google Scholar 

  • Tabata K, Kajiyama M, Hiraishi T, Abe H, Yamato I, Doi Y (2001) Purification and characterization of poly(aspartic acid) hydrolase from Sphingomonas sp. KT-1. Biomacromolecules 2:1155–1160

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Wheeler AP (2001) Environmental factors that influence biodegradation of thermal poly(aspartate). In: Gross R, Scholz C (eds) Biopolymers from polysaccharides and agroproteins, ACS Symposium Series. American Chemical Society, Washington, pp 157–171

    Chapter  Google Scholar 

  • Thombre SM, Sarwade BD (2005) Synthesis and biodegradability of polyaspartic acid: a critical review. J Macromol Sci, Part A: Pure Appl Chem 42:1299–1315

    Article  CAS  Google Scholar 

  • Uemura T, Fujimori M, Lee HH, Ikeda S, Aso K (1990) Polyethylene glycol-modified papain catalyzed oligopeptide synthesis from the esters of l-aspartic and l-glutamic acids in benzene. Agric Biol Chem 54:2277–2281

    CAS  Google Scholar 

  • Uyama H, Fukuoka T, Komatsu I, Watanabe T, Kobayashi S (2002) Protease-catalyzed regioselective polymerization and copolymerization of glutamic acid diethyl ester. Biomacromolecules 3:318–323

    Article  CAS  PubMed  Google Scholar 

  • Wolk SK, Swift G, Paik YH, Yocom KM, Smith RL, Simon ES (1994) One- and two-dimensional nuclear magnetic resonance characterization of poly(aspartic acid) prepared by thermal polymerization of l-aspartic acid. Macromolecules 27:7613–7620

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to sincerely thank Professor A. Steinbüchel for granting us the opportunity to prepare this mini-review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomohiro Hiraishi or Mizuo Maeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiraishi, T., Maeda, M. Poly(aspartate) hydrolases: biochemical properties and applications. Appl Microbiol Biotechnol 91, 895–903 (2011). https://doi.org/10.1007/s00253-011-3429-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3429-6

Keywords

Navigation