Skip to main content
Log in

Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin (LysAB2) against both Gram-positive and Gram-negative bacteria

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the nature and origin of the antibacterial activity of the lytic phage ϕAB2 toward Acinetobacter baumannii, we successfully isolated and characterized a novel phage lysozyme (endolysin) from ϕAB2 and named it LysAB2. To analyze antibacterial activity of LysAB2, the complete LysAB2 and two deletion derivatives were constructed, purified and characterized. Zymographic assays showed that only the intact LysAB2 could lyse the peptidoglycan of A. baumannii and the Staphylococcus aureus cell wall. Antibacterial analysis also showed that only the intact LysAB2 retained the complete bactericidal activity. When applied exogenously, LysAB2 exhibited a broad bacteriolytic activity against a number of Gram-negative and Gram-positive bacteria. Thermostability assays indicated that LysAB2 was stable at 20∼40°C. Its optimal pH was 6.0, and it was active from pH 4 to 8. Scanning electron microscopy revealed that exposure to 500 μg ml−1 LysAB2 for up to 60 min caused a remarkable modification of the cell shape of the bacteria. Treating bacteria with LysAB2 clearly enhanced permeation of the bacterial cytoplasmic membrane. These results indicate that LysAB2 is an effective lysozyme against bacteria, and they suggest that it is a good candidate for a therapeutic/disinfectant agent to control nosocomial infections caused by multiple drug-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barrow PA, Soothill JS (1997) Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol 5:268–271

    Article  CAS  Google Scholar 

  • Bergogne-Berezin E, Towner KJ (1996) Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9:148–165

    CAS  Google Scholar 

  • Borysowski J, Weber-Dabrowska B, Gorski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood) 231:366–377

    CAS  Google Scholar 

  • Brunner F, Stintzi A, Fritig B, Legrand M (1998) Substrate specificities of tobacco chitinases. Plant J 14:225–234

    Article  CAS  Google Scholar 

  • Ceyssens PJ, Lavigne R, Mattheus W, Chibeu A, Hertveldt K, Mast J, Robben J, Volckaert G (2006) Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the phiKMV subgroup within the T7 supergroup. J Bacteriol 188:6924–6931

    Article  CAS  Google Scholar 

  • Dijkshoorn L, Nemec A, Seifert H (2007) An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 5:939–951

    Article  CAS  Google Scholar 

  • During K, Porsch P, Mahn A, Brinkmann O, Gieffers W (1999) The non-enzymatic microbicidal activity of lysozymes. FEBS Lett 449:93–100

    Article  CAS  Google Scholar 

  • Entenza JM, Loeffler JM, Grandgirard D, Fischetti VA, Moreillon P (2005) Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob Agents Chemother 49:4789–4792

    Article  CAS  Google Scholar 

  • Gille C, Frommel C (2001) STRAP: editor for STRuctural alignments of proteins. Bioinformatics 17:377–378

    Article  CAS  Google Scholar 

  • Hahn M, Hennig M, Schlesier B, Hohne W (2000) Structure of jack bean chitinase. Acta Crystallogr D Biol Crystallogr 56:1096–1099

    Article  CAS  Google Scholar 

  • Hart PJ, Pfluger HD, Monzingo AF, Hollis T, Robertus JD (1995) The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8 a resolution. J Mol Biol 248:402–413

    Article  CAS  Google Scholar 

  • Hermoso JA, Garcia JL, Garcia P (2007) Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol 10:461–472

    Article  CAS  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36 (Web Server issue):W5–9

  • Kakikawa M, Yokoi KJ, Kimoto H, Nakano M, Kawasaki K, Taketo A, Kodaira K (2002) Molecular analysis of the lysis protein Lys encoded by Lactobacillus plantarum phage phig1e. Gene 299:227–234

    Article  CAS  Google Scholar 

  • Lavigne R, Burkal'tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaert G (2003) The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:49–59

    Article  CAS  Google Scholar 

  • Lin NT, Chiou PY, Chang KC, Chen LK, Lai MJ (2010) Isolation and characterization of phi AB2: a novel bacteriophage of Acinetobacter baumannii. Res Microbiol 161:308–314

    Article  CAS  Google Scholar 

  • Mangoni ML, Papo N, Barra D, Simmaco M, Bozzi A, Di Giulio A, Rinaldi AC (2004) Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. Biochem J 380:859–865

    Article  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37 (Database issue):D205–D210

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  Google Scholar 

  • Monzingo AF, Marcotte EM, Hart PJ, Robertus JD (1996) Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Nat Struct Biol 3:133–140

    Article  CAS  Google Scholar 

  • Morita M, Tanji Y, Orito Y, Mizoguchi K, Soejima A, Unno H (2001) Functional analysis of antibacterial activity of Bacillus amyloliquefaciens phage endolysin against Gram-negative bacteria. FEBS Lett 500:56–59

    Article  CAS  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  Google Scholar 

  • Orito Y, Morita M, Hori K, Unno H, Tanji Y (2004) Bacillus amyloliquefaciens phage endolysin can enhance permeability of Pseudomonas aeruginosa outer membrane and induce cell lysis. Appl Microbiol Biotechnol 65:105–109

    Article  CAS  Google Scholar 

  • Patil RS, Ghormade VV, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzyme Microb Technol 26:473–483

    Article  CAS  Google Scholar 

  • Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582

    Article  CAS  Google Scholar 

  • Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51:3471–3484

    Article  CAS  Google Scholar 

  • Stone R (2002) Bacteriophage therapy. Stalin’s forgotten cure. Science 298:728–731

    Article  CAS  Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    Article  CAS  Google Scholar 

  • Ubhayasekera W, Rawat R, Ho SW, Wiweger M, Von Arnold S, Chye ML, Mowbray SL (2009) The first crystal structures of a family 19 class IV chitinase: the enzyme from Norway spruce. Plant Mol Biol 71:277–289

    Article  CAS  Google Scholar 

  • Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411

    CAS  Google Scholar 

  • van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890

    Article  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  CAS  Google Scholar 

  • Wroblewska M (2006) Novel therapies of multidrug-resistant Pseudomonas aeruginosa and Acinetobacter spp. infections: the state of the art. Arch Immunol Ther Exp (Warsz) 54:113–120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Electron Microscopy Laboratory of the Department of Anatomy of Tzu Chi University for technical assistance. This work was supported by grants TCSP-0302 from the Buddhist Tzu Chi General Hospital and TCIRP99002-03 from Tzu Chi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Chih Chang.

Additional information

Meng-Jiun Lai and Nien-Tsung Lin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, MJ., Lin, NT., Hu, A. et al. Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin (LysAB2) against both Gram-positive and Gram-negative bacteria. Appl Microbiol Biotechnol 90, 529–539 (2011). https://doi.org/10.1007/s00253-011-3104-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3104-y

Keywords

Navigation