Skip to main content
Log in

Integrated production of xylitol and ethanol using corncob

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Xylitol production from corncob hemicellulose is a popular process in China. Microbial conversion of xylose to xylitol, as a biological process with many advantages, has drawn increasing attention. As a by-product from the manufacturing of xylitol, corncob cellulosic residues are produced in very large amounts and represent an environmental problem. As a result, considering the large amount of xylitol production in China, the conversion of corncob cellulosic residues has become a widespread issue having to be tackled. After the hemicellulose in corncob has been hydrolyzed for xylitol production, the corncob cellulosic residue is porous and can easily be hydrolyzed by cellulases into glucose and further converted to ethanol, another high-added-value chemical. Based on the latest technology advancements in xylitol, cellulase, and ethanol production, the integrated production of ethanol from corncob cellulosic residues appears as a promising way to improve the profit of the whole xylitol production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Canilha L, Almeida SJB, Solenzal AIN (2004) Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchanger resins for xylitol production. Process Biochem 39:1909–1912

    Article  CAS  Google Scholar 

  • Cao NJ, Krishnan MS, Du JX, Gong CS, Ho NWY, Chen ZD, Tsao GT (1996) Ethanol production from corncob pretreated by the ammonia steeping process using genetically engineered yeast. Biotechnol Lett 18:1013–1018

    Article  CAS  Google Scholar 

  • Carvalheiro F, Duarte LC, Lopes S, Parajó JC, Pereira H, Gírio FM (2005) Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem 40:1215–1223

    Article  CAS  Google Scholar 

  • Carvalho W, Santos JC, Canilha L, Silva SS, Perego P, Converti A (2005) Xylitol production from sugarcane bagasse hydrolysate: metabolic behaviour of Candida guilliermondii cells entrapped in Ca-alginate. Biochem Eng J 25:25–31

    Article  CAS  Google Scholar 

  • Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950

    Article  CAS  Google Scholar 

  • Chen M, Xia LM, Xue PJ (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeterior Biodegrad 59:85–89

    Article  CAS  Google Scholar 

  • Cheng KK, Zhang JA, Ling HZ, Ping WX, Huang W, Ge JP, Xu JM (2009a) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J 43:203–207

    Article  CAS  Google Scholar 

  • Cheng Y, Song X, Qin Y, Qu YB (2009b) Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J Appl Microbiol 107:1837–186

    Article  CAS  Google Scholar 

  • Converti A, Perego P, Domínguez JM (1999) Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol Lett 21:719–723

    Article  CAS  Google Scholar 

  • Ding XH, Xia LM (2006) Effect of aeration rate on production of xylitol from corncob hemicellulose hydrolysate. Appl Biochem Biotechnol 133:263–270

    Article  CAS  Google Scholar 

  • Dominguez JM, Cao NJ, Gong CS, Tsao GT (1997a) Dilute acid hemicellulose hydrolysates from corncobs for xylitol production by yeast. Bioresour Technol 61:85–90

    Article  CAS  Google Scholar 

  • Dominguez JM, Gong CS, Tsao GT (1997b) Production of xylitol from d-xylose by Debaryomyces hansenii. Appl Biochem Biotechnol 63:117–127

    Article  Google Scholar 

  • Eken-Saracoglu N, Arslan Y (2000) Comparison of different pretreatments in ethanol fermentation using corncob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae. Biotechnol Lett 22:855–858

    Article  CAS  Google Scholar 

  • Emodi A (1978) Xylitol: its properties and food applications. Food Technol 32:28–32

    CAS  Google Scholar 

  • Ernesto AM, João BAS, Marco G, Ana INS (2007) Downstream process for xylitol produced from fermented hydrolysate. Enzyme Microb Technol 40:1193–1198

    Article  Google Scholar 

  • Farooq L, Mohammad IR (2001) Production of ethanol and xylitol from corncobs by yeasts. Bioresour Technol 77:57–63

    Article  Google Scholar 

  • Fond O, Jansen NB, Tsao GT (1985) A model of acetate and 2,3-butanediol inhibition of the growth and metabolism of Klebsiella oxytoca. Biotechnol Lett 7:727–732

    Article  CAS  Google Scholar 

  • Ikeuchi T, Azuma M, Kato J, Ooshima H (1999) Screening of microorganisms for xylitol production and fermentation behavior in high concentrations of xylose. Biomass Bioeng 16:333–339

    Article  CAS  Google Scholar 

  • Kang HY, Kim YS, Kim GJ, Seo JH, Ryu YW (2005) Screening and characterization of flocculent yeast, Candida sp. HY200, for the production of xylitol from d-xylose. J Microbiol Biotechnol 15:362–367

    CAS  Google Scholar 

  • Kim SY, Kim JH, Oh DK (1997) Improvement of xylitol production by controlling oxygen supply in Candida parapsilosis. J Ferment Bioeng 83:267–270

    Article  CAS  Google Scholar 

  • Kim JH, Han KC, Ryu YW, Seo JH (2002) Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J Ind Microbiol Biotechnol 29:16–19

    Article  CAS  Google Scholar 

  • Kwon SG, Park SW, Oh DK (2006) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng 101:13–18

    Article  CAS  Google Scholar 

  • Leathers TD, Gupta SC (1997) Xylitol and riboflavin accumulation in xylose-grown cultures of Pichia guilliermondii. Appl Microbiol Biotechnol 47:58–61

    Article  CAS  Google Scholar 

  • Lee WJ, Kim MD, Yoo MS, Ryu YW, Seo JH (2003) Effects of xylose reductase activity on xylitol production in two-substrate fermentation of recombinant Saccharomyces cerevisiae. J Microbiol Biotechnol 13:725–730

    CAS  Google Scholar 

  • Liaw WC, Chen CS, Chang WS, Chen KP (2008) Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J Biosci Bioeng 105:97–105

    Article  CAS  Google Scholar 

  • Lima LHA, Felipe MGA, Vitolo M, Torres FAG (2004) Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in C. guilliermondii. Appl Microbiol Biotechnol 65:734–738

    Article  CAS  Google Scholar 

  • Mancilha IM, Karim MN (2003) Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation. Biotechnol Prog 19:1837–1841

    Article  Google Scholar 

  • Meyrial V, Delgenes JP, Moletta R, Navarro JM (1991) Xylitol production by Candida guilliermondii: fermentation behavior. Biotechnol Lett 13:281–286

    Article  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Kinetic behaviour of Candida guilliermondii yeast during xylitol production from highly concentrated hydrolysate. Process Biochem 39:1433–1439

    Article  CAS  Google Scholar 

  • Pattra S, Sangyoka S, Boonmee M, Reungsang A (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrogen Energy 33:5256–5265

    Article  CAS  Google Scholar 

  • Qu YB, Zhu MT, Cheng SB, Xiao L, Bao XM, Lin JQ (2006a) Method for producing cellulose alcohol using corncob processing leftover by fermenting. Chinese patent no. CN1944658-A

  • Qu YB, Zhu MT, Liu K, Bao XM, Lin JQ (2006b) Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnol J 1:1235–1240

    Article  CAS  Google Scholar 

  • Rivas B, Dominguez JM, Domínguez H, Parajó JC (2002) Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corncobs. Enzyme Microb Technol 31:431–438

    Article  CAS  Google Scholar 

  • Rodrigues DCGA, Silva SS, Felipe MGA (1999) Fed-batch culture of Candida guilliermondii FTI 20037 for xylitol production from sugar cane bagasse hydrolysate. Lett Appl Microbiol 29:359–363

    Article  CAS  Google Scholar 

  • Rodriguez-Chong A, Ramirez JA, Garrote G, Vazquez M (2004) Hydrolysis of sugarcane bagasse using nitric acid: a kinetic assessment. J Food Eng 61:143–152

    Article  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700

    Article  CAS  Google Scholar 

  • Sakakibara Y, Saha BC, Taylor P (2009) Microbial production of xylitol from l-arabinose by metabolically engineered Escherichia coli. J Biosci Bioeng 107:506–511

    Article  CAS  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  CAS  Google Scholar 

  • Solange IM, Giuliano D, Ines CR (2005) Influence of the toxic compounds present in brewer's spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Process Biochem 40:3801–3806

    Article  Google Scholar 

  • Suzuki T, Yokoyama SI, Kinoshita Y, Yamada H, Hatsu M, Takamizawa K, Kawai K (1999) Expression of xyrA gene encoding for d-xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. J Biosci Bioeng 87:280–284

    Article  CAS  Google Scholar 

  • Tada K, Horiuchi J, Kanno T, Kobayashi M (2004) Microbial xylitol production from corncobs using Candida magnoliae. J Biosci Bioeng 98:228–230

    CAS  Google Scholar 

  • Walther T, Hensirisak P, Agblevor FA (2001) The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour Technol 76:213–220

    Article  CAS  Google Scholar 

  • Washuttle J, Riederer P, Banchen E (1973) Qualitative and quantitative study of sugar-alcohols in several foods. J Food Sci 38:1262–1263

    Article  Google Scholar 

  • Xia LM, Cen PL (1999) Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochem 34:909–912

    Article  CAS  Google Scholar 

  • Xia LM, Shen XL (2004) High-yield cellulase production by Trichoderma reesei ZU-02 on corncob residue. Bioresour Technol 91:259–262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the key projects funding of the National Science and Technology Pillar Program of the 11th 5-Year Plan Period (2006BAC02A17), State 863 Program (2006AA020101), Shanxi Pillar Program (20090322025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-An Zhang or Jin-Ping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, KK., Zhang, JA., Chavez, E. et al. Integrated production of xylitol and ethanol using corncob. Appl Microbiol Biotechnol 87, 411–417 (2010). https://doi.org/10.1007/s00253-010-2612-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2612-5

Keywords

Navigation