Skip to main content

Advertisement

Log in

Comparison and critical evaluation of PCR-mediated methods to walk along the sequence of genomic DNA

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Although researchers can access information on the entire genomic DNA sequence of typical research organisms, convenient genome walking methods in the laboratory are still needed. For the analysis of microorganisms, these methods are especially useful because the available genetic information is often scarce or limited. Many genomic walking methods are based on the polymerase chain reaction (PCR), and useful methods have been developed. This report reviews the methodologies of PCR-mediated genomic walking methods and evaluates their efficiency and usefulness to help microbiologists to select the appropriate method for each target microorganism. The concept and specific features, such as advantages and disadvantages, of five major PCR-mediated genomic walking methods (random PCR, inverse PCR, panhandle PCR, cassette PCR, and rapid amplification of genomic ends) are briefly described. The improved methods and their characteristics are listed, and a report of experimental comparison of such methods is also introduced briefly. Each of these methods has both advantages and disadvantages, and there is a trade-off between the specificity of target amplification and the ease of the method. The cassette PCR seems to be a standard method, but suitable method should be selected in consideration of the characteristics of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aquino VH, Figueiredo LTM (2004) Linear amplification followed by single primer polymerase chain reaction to amplify unknown DNA fragments: complete nucleotide sequence of Oropouche virus M RNA segment. J Virol Methods 115:51–57

    Article  CAS  PubMed  Google Scholar 

  • Arnold C, Hodgson IJ (1991) Vectorette PCR: a novel approach to genomic walking. PCR Methods Appl 1:39–42

    Article  CAS  PubMed  Google Scholar 

  • Benkel BF, Fong Y (1996) Long range-inverse PCR (LR-IPCR): extending the useful range of inverse PCR. Genet Anal 13:123–127

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wu R (1997) Direct amplification of unknown genes and fragments by uneven polymerase chain reaction. Gene 185:195–199

    Article  CAS  PubMed  Google Scholar 

  • Cormack RS, Somssich IE (1997) Rapid amplification of genomic ends (RAGE) as a simple method to clone flanking genomic DNA. Gene 194:273–276

    Article  CAS  PubMed  Google Scholar 

  • Cottage A, Yang A, Maunders H, de Lacy RC, Ramsay NA (2001) Identification of DNA sequences flanking T-DNA insertions by PCR-walking. Plant Mol Biol Rep 19:321–327

    Article  CAS  Google Scholar 

  • Ge Y, Charon NW (1997) Identification of a large motility operon in Borrelia burgdorferi by semi-random PCR chromosome walking. Gene 189:195–201

    Article  CAS  PubMed  Google Scholar 

  • Huang X-Q, Cloutier S (2007) Hemi-nested touchdown PCR combined with primer-template mismatch PCR for rapid isolation and sequencing of low molecular weight glutenin subunit gene family from a hexaploid wheat BAC library. BMC Genet 8:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DH, Winistorfer SC (1992) Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA. Nucleic Acids Res 20(3):595–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DH, Winistorfer SC (1993) Genome walking with 2- to 4-kb steps using panhandle PCR. PCR Methods Appl 2:197–203

    Article  CAS  PubMed  Google Scholar 

  • Jones DSC, Platzer M, Rosenthal A (1994) Extension of incomplete cDNAs (ESTs) by biotin/streptavidin-mediated walking using the polymerase chain reaction. J Biotechnol 35:205–215

    Article  Google Scholar 

  • Kohda T, Taira K (2000) A simple and efficient method to determine the terminal sequences of restriction fragments containing known sequences. DNA Res 7:151–155

    Article  CAS  PubMed  Google Scholar 

  • Korpelainen H, Kostamo K, Virtanen V (2007) Microsatellite marker identification using genome screening and restriction-ligation. BioTechniques 42:479–486

    Article  CAS  PubMed  Google Scholar 

  • Laging M, Fartmann B, Kramer W (2001) Isolation of segments of homologous genes with only one conserved amino acid region via PCR. Nucleic Acids Res 29(2):e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leoni C, Gallerani R, Ceci LR (2008) A genome walking strategy for the identification of eukaryotic nucleotide sequences adjacent to known regions. BioTechniques 44:229–235

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Kelemen DW, Miller ES, Shih JCH (1995) Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Appl Environ Microbiol 61(4):1469–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y-G, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  CAS  PubMed  Google Scholar 

  • Loh EY, Elliott JF, Cwirla S, Lanier LL, Davis MM (1989) Polymerase chain reaction with single-sided specificity: analysis of T cell receptor δ chain. Science 243:217–220

    Article  CAS  PubMed  Google Scholar 

  • Mishra RN, Singla-Pareek SL, Nair S, Sopory SK, Reddy MK (2002) Directional genome walking using PCR. BioTechniques 33(4):830–834

    Article  CAS  PubMed  Google Scholar 

  • Morris DD, Reeves RA, Gibbs MD, Saul DJ, Bergquist PL (1995) Correction of the β-mannanase domain of the celC pseudogene from Caldocellulosiruptor saccharolyticus and activity of the gene product on Kraft pulp. Appl Environ Microbiol 61(6):2262–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller PR, Wold B (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246:780–786

    Article  CAS  PubMed  Google Scholar 

  • Myrick KV, Gelbart WM (2002) Universal fast walking for direct and versatile determination of flanking sequence. Gene 284:125–131

    Article  CAS  PubMed  Google Scholar 

  • Nthangeni MB, Ramagoma F, Tlou MG, Litthauer D (2005) Development of a versatile cassette for directional genome walking using cassette ligation-mediated PCR and its application in the cloning of complete lipolytic genes from Bacillus species. J Microbiol Methods 61:225–234

    Article  CAS  PubMed  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohara O, Dorit RL, Gilbert W (1989) One-sided polymerase chain reaction: the amplification of cDNA. Proc Natl Acad Sci USA 86:5673–5677

    Article  CAS  PubMed  Google Scholar 

  • Padegimas LS, Reichert NA (1998) Adaptor ligation-based polymerase chain reaction-mediated walking. Anal Biochem 260:149–153

    Article  CAS  PubMed  Google Scholar 

  • Park DJ (2005) LaNe RAGE: a new tool for genomic DNA flanking sequence determination. Electron J Biotechnol 8(2):218–225

    Article  CAS  Google Scholar 

  • Parker JD, Rabinovitch PS, Burmer GC (1991) Targeted gene walking polymerase chain reaction. Nucleic Acids Res 19(11):3055–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilhofer M, Bauer AP, Schrallhammer M, Richter L, Ludwig W, Schleifer K-H, Petroni G (2007) Characterization of bacterial operons consisting of two tubulins and a kinesin-like gene by the novel two-step gene walking method. Nucleic Acids Res 35(20):e135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy PS, Mahanty S, Kaul T, Nair S, Sopory SK, Reddy MK (2008) A high-throughput genome-walking method and its use for cloning unknown flanking sequences. Anal Biochem 381:248–253

    Article  CAS  PubMed  Google Scholar 

  • Riley J, Butler R, Ogilvie D, Finniear R, Jenner D, Powell S, Anand R, Smith JC, Markham AF (1990) A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res 18(10):2887–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rishi AS, Nelson ND, Goyal A (2004) Genome walking of large fragments: an improved method. J Biotechnol 111:9–15

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal A, Jones DSC (1990) Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction. Nucleic Acids Res 18(10):3095–3096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiki RK, Gelfand DH, Stofeel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana KV, Chandrashekar A, Ravishankar GA (2006) Evaluation of PCR-based methods for isolating flanking regions of genes. Mol Biotechnol 32:111–116

    Article  CAS  PubMed  Google Scholar 

  • Shyamala V, Ames GFL (1989) Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR. Gene 84:1–8

    Article  CAS  PubMed  Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23(6):1087–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szybalski W (1993) From the double-helix to novel approaches to the sequencing of large genomes. Gene 135:279–290

    Article  CAS  PubMed  Google Scholar 

  • Tan G, Gao Y, Shi M, Zhang X, He S, Chen Z, An C (2005) SiteFinding-PCR: a simple and efficient PCR method for chromosome walking. Nucleic Acids Res 33(13):e122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tonooka Y, Mizukami Y, Fujishima M (2008) One-base excess adaptor ligation method for walking uncloned genomic DNA. Appl Microbiol Biotechnol 78(1):173–180

    Article  CAS  PubMed  Google Scholar 

  • Walser J-C, Evgen’ev MB, Feder ME (2006) A genomic walking method for screening sequence length polymorphism. Mol Ecol Notes 6:563–567

    Article  CAS  Google Scholar 

  • Wang S, He J, Cui Z, Li S (2007) Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Appl Environ Microbiol 73(15):5048–5051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuanxin Y, Chengcai A, Li L, Jiayu G, Guihong T, Zhangliang C (2003) T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res 31(12):e68

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Gurr SJ (2000) Walking into the unknown: a ‘step down’ PCR-based technique leading to the direct sequence analysis of flanking genomic DNA. Gene 253:145–150

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Tonooka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonooka, Y., Fujishima, M. Comparison and critical evaluation of PCR-mediated methods to walk along the sequence of genomic DNA. Appl Microbiol Biotechnol 85, 37–43 (2009). https://doi.org/10.1007/s00253-009-2211-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2211-5

Keywords

Navigation