Skip to main content
Log in

Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

One solution to the global crisis of antibiotic resistance is the discovery of novel antimicrobial compounds for clinical application. Marine organisms are an attractive and, as yet, relatively untapped resource of new natural products. Cell extracts from the marine diatom, Phaeodactylum tricornutum, have antibacterial activity and the fatty acid, eicosapentaenoic acid (EPA), has been identified as one compound responsible for this activity. During the isolation of EPA, it became apparent that the extracts contained further antibacterial compounds. The present study was undertaken to isolate these additional antibacterial factors using silica column chromatography and reverse-phase high-performance liquid chromatography. Two antibacterial fractions, each containing a pure compound, were isolated and their chemical structures were investigated by mass spectrometry and nuclear magnetic resonance spectroscopy. The antibacterial compounds were identified as the monounsaturated fatty acid (9Z)-hexadecenoic acid (palmitoleic acid; C16:1 n-7) and the relatively unusual polyunsaturated fatty acid (6Z, 9Z, 12Z)-hexadecatrienoic acid (HTA; C16:3 n-4). Both are active against Gram-positive bacteria with HTA further inhibitory to the growth of the Gram-negative marine pathogen, Listonella anguillarum. Palmitoleic acid is active at micro-molar concentrations, kills bacteria rapidly, and is highly active against multidrug-resistant Staphylococcus aureus. These free fatty acids warrant further investigation as a new potential therapy for drug-resistant infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen EJ, Nelson EW (1910) On the artificial culture of marine plankton organisms. J Mar Biol Assoc UK 8:421–474

    Article  Google Scholar 

  • Bergsson G, Arnfinnsson J, Steingrímsson Ó, Thormar H (2001) Killing of Gram-positive cocci by fatty acids and monoglycerides. APMIS 109:670–678

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15

    Article  CAS  Google Scholar 

  • Borst P, Loos JA, Christ EJ, Slater EC (1962) Uncoupling activity of long-chain fatty acids. Biochim Biophys Acta 62:509–518

    Article  CAS  PubMed  Google Scholar 

  • Budge SM, Parrish CC (1999) Lipid class and fatty acid composition of Pseudo-nitzschia multiseries and Pseudo-nitzschia pungens and effects of lipolytic enzyme deactivation. Phytochemistry 52:561–566

    Article  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (2002) Staphylococcus aureus resistant to vancomycin—United States, 2002. MMWR 51:565–567

    Google Scholar 

  • Clarke SR, Mohamed R, Bian L, Routh AF, Kokai-Kun JF, Mond JJ, Tarkowski A, Foster SJ (2007) The Staphylococcus aureus surface protein isdA mediates resistance to innate defenses of human skin. Cell Host Microbe 1:1–14

    Article  CAS  Google Scholar 

  • Cooper S, Battat A, Marsot P, Sylvestre M (1983) Production of antibacterial activities by two Bacillariophyceae grown in dialysis culture. Can J Microbiol 29:338–341

    Article  Google Scholar 

  • Cooper SF, Battat A, Marsot P, Sylvestre M, Laliberté C (1985) Identification of antibacterial fatty acids from Phaeodactylum tricornutum grown in dialysis culture. Microbios 42:27–36

    CAS  Google Scholar 

  • Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60

    Article  CAS  PubMed  Google Scholar 

  • Cutignano A, d’Ippolito G, Romano G, Lamari N, Cimino G, Febbraio F, Nucci R, Fontana A (2006) Chloroplastic glycolipids fuel aldehyde biosynthesis in the marine diatom Thalassiosira rotula. ChemBioChem 7:450–456

    Article  CAS  PubMed  Google Scholar 

  • Desbois AP, Mearns-Spragg A, Smith VJ (2008) A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol doi:https://doi.org/10.1007/s10126-008-9118-5

    Article  CAS  PubMed  Google Scholar 

  • Duff DCB, Bruce DL, Antia NJ (1966) The antibacterial activity of marine planktonic algae. Can J Microbiol 12:877–884

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48

    CAS  PubMed  Google Scholar 

  • Findlay JA, Patil AD (1984) Antibacterial constituents of the diatom Navicula delognei. J Nat Prod 47:815–818

    Article  CAS  PubMed  Google Scholar 

  • Galbraith H, Miller TB (1973) Physicochemical effects of long chain fatty acids on bacterial cells and their protoplasts. J Appl Bacteriol 36:647–658

    Article  CAS  PubMed  Google Scholar 

  • Harvey A (2000) Strategies for discovering drugs from previously unexplored natural products. Drug Discov Today 5:294–300

    Article  CAS  PubMed  Google Scholar 

  • Jamieson GR, Reid EH (1971) The occurrence of hexadeca-7,10,13-trienoic acid in the leaf lipids of angiosperms. Phytochemistry 10:1837–1843

    Article  CAS  Google Scholar 

  • Jensen PR, Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48:559–584

    Article  CAS  PubMed  Google Scholar 

  • Jüttner F (2001) Liberation of 5,8,11,14,17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. J Phycol 37:744–755

    Article  Google Scholar 

  • Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2:23–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabara JJ, Conley AJ, Swieczkowski DM, Ismail IA, Lie Ken Jie M, Gunstone FD (1973) Antimicrobial action of isomeric fatty acids on group A Streptococcus. J Med Chem 16:1060–1063

    Article  CAS  PubMed  Google Scholar 

  • Kabara JJ, Vrable R, Lie Ken Jie MSF (1977) Antimicrobial lipids: natural and synthetic fatty acids and monoglycerides. Lipids 12:753–759

    Article  CAS  PubMed  Google Scholar 

  • Kellam SJ, Walker JM (1989) Antibacterial activity from marine microalgae in laboratory culture. Br Phycol J 24:191–194

    Article  Google Scholar 

  • Knapp HR, Melly MA (1986) Bactericidal effects of polyunsaturated fatty acids. J Infect Dis 154:84–94

    Article  CAS  PubMed  Google Scholar 

  • Lacey RW, Lord VL (1981) Sensitivity of staphylococci to fatty acids: novel inactivation of linolenic acid by serum. J Med Microbiol 14:41–49

    Article  CAS  PubMed  Google Scholar 

  • Laser H (1952) Adaption of Bacillus subtilis to fatty acids. Biochem J 51:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Fan X, Han L, Lou Q (2002) Fatty acids of some algae from the Bohai Sea. Phytochemistry 59:157–161

    Article  CAS  PubMed  Google Scholar 

  • Miller RD, Brown KE, Morse SA (1977) Inhibitory activity of fatty acids on the growth of Neisseria gonorrhoeae. Infect Immun 17:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss CW, Daneshvar MI (1992) Identification of some uncommon monounsaturated fatty acids of bacteria. J Clin Microbiol 30:2511–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton TA, Melkonian M, Andersen RA (1996) Algal biodiversity. Phycologia 35:308–326

    Article  Google Scholar 

  • Parrish CC, Wangersky PJ (1987) Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Mar Ecol Prog Ser 35:119–128

    Article  CAS  Google Scholar 

  • Pesando D (1990) Antibacterial and antifungal activities of marine algae. In: Akatsuka I (ed) Introduction to applied phycology. SPB Academic Publishing B.V., The Hague, pp 3–26

    Google Scholar 

  • Pohnert G (2002) Phospholipase A2 activity triggers the wound-activated chemical defense in the diatom Thalassiosira rotula. Plant Physiol 129:103–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheu CW, Freese E (1972) Effects of fatty acids on growth and envelope proteins of Bacillus subtilis. J Bacteriol 111:516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu Y (1996) Microalgal metabolites: a new perspective. Annu Rev Microbiol 50:431–465

    Article  CAS  PubMed  Google Scholar 

  • Shin SY, Bajpai VK, Kim HR, Kang SC (2007) Antibacterial activity of eicosapentaenoic acid (EPA) against food borne and food spoilage microorganisms. LWT 40:1515–1519

    Article  CAS  Google Scholar 

  • Srinivasan A, Dick JD, Perl TM (2002) Vancomycin resistance in staphylococci. Clin Microbiol Rev 15:430–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun CQ, O’Connor CJ, Roberton AM (2003) Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol Med Microbiol 36:9–17

    Article  CAS  PubMed  Google Scholar 

  • Thormar H, Isaacs CE, Brown HR, Barshatzky MR, Pessolano T (1987) Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother 31:27–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton MJ, Henderson RJ, Pomeroy PP (2000) Use of blubber fatty acid profiles to distinguish dietary differences between grey seals Halichoerus grypus from two UK breeding colonies. Mar Ecol Prog Ser 193:201–208

    Article  CAS  Google Scholar 

  • Wang L-L, Johnson EA (1992) Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Appl Environ Microbiol 58:624–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG (2005) Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett 579:5157–5162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Mike Walton for assistance during DMDS adducts synthesis and Ms. Caroline Horsburgh (School of Chemistry, University of St. Andrews) and Dr. Catherine Botting (School of Biology, University of St. Andrews) for mass spectrometry. Strains of B. cereus, B. weihenstephanensis, C. glabrata, C. neoformis, MRSA252 and S. cerevisiae were gifted by Dr. Peter Coote (School of Biology, University of St. Andrews) and Prof. Simon Foster (Department of Molecular Biology and Biotechnology, University of Sheffield) gifted the S. aureus strain. This work was funded by a BBSRC studentship (BBS/S/M/2003/10490) with additional financial support from Dr. Andrew Mearns-Spragg (CEO, Aquapharm Bio-Discovery Ltd.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie J. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desbois, A.P., Lebl, T., Yan, L. et al. Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum . Appl Microbiol Biotechnol 81, 755–764 (2008). https://doi.org/10.1007/s00253-008-1714-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1714-9

Keywords

Navigation