Skip to main content
Log in

Fermentation process development for the production of medium-chain-length poly-3-hyroxyalkanoates

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This paper presents a review of the existing fermentation processes for the production of medium-chain-length poly-3-hydroxyalkanoates (MCL-PHAs). These biodegradable polymers are usually produced most efficiently from structurally related carbon sources such as alkanes and alkanoic acids. Unlike alkanoic acids, alkanes exhibit little toxicity but their low aqueous solubility limits their use in high density culture. Alkanoic acids pose little mass transfer difficulty, but their toxicity requires that their concentration be well controlled. Using presently available technology, large-scale production of MCL-PHA from octane has been reported to cost from US $5 to 10 per kilogram, with expenditures almost evenly divided between carbon source, fermentation process, and the separation process. However, MCL-PHAs, even some with functional groups in their subunits, can also be produced from cheaper unrelated carbon sources, such as glucose. Metabolic engineering and other approaches should also allow increased PHA cellular content to be achieved. These approaches, as well as a better understanding of fermentation kinetics, will likely result in increased productivity and lower production costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ashby RD, Solaiman DKY, Foglia TA (2004) Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J Polym Environ 12:105–112

    Article  CAS  Google Scholar 

  • Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21

    Article  CAS  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  CAS  PubMed  Google Scholar 

  • de Koning GJM, Kellerhals M, van Meurs C, Witholt B (1997) A process for the recovery of poly(hydroxyalkanoates) from Pseudomonads, 2. Process development and economic evaluation. Bioprocess Biosyst Eng 17(1):15–21

    Article  Google Scholar 

  • de Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878

    Article  PubMed  PubMed Central  Google Scholar 

  • Diard S, Carlier JP, Ageron E, Grimont PAD, Langlois V, Guerin P, Bouvet OMM (2002) Accumulation of poly(3-hydroxybutyrate) from octanoate, in different Pseudomonas belonging to the rRNA homology group I. Syst Appl Microbiol 25:183–188

    Article  CAS  PubMed  Google Scholar 

  • Diniz SC, Taciro MK, Gomez JG, da Cruz Pradella JG (2004) High-cell-density cultivation of Pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoate production from sugarcane carbohydrates. Appl Biochem Biotechnol 119:51–70

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A, Samain E (1998) Preparation and characterization of a poly(beta-hydroxyoctanoate) latex produced by Pseudomonas oleovorans. Macromolecules 31:6426–6433

    Article  CAS  Google Scholar 

  • Durner R, Witholt B, Egli T (2000) Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth with octanoate in continuous culture at different dilution rates. Appl Environ Microbiol 66:3408–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durner R, Zinn M, Witholt B, Egli T (2001) Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources. Biotechnol Bioeng 72:278–288

    Article  CAS  PubMed  Google Scholar 

  • Eggink G, Dewaard P, Huijberts GNM (1992) The role of fatty-acid biosynthesis and degradation in the supply of substrates for poly(3-hydroxyalkanoate) formation in Pseudomonas putida. FEMS Microbiol Rev 103:159–163

    Article  CAS  Google Scholar 

  • Fritzsche K, Lenz RW, Fuller RC (1990) Production of unsaturated polyesters by Pseudomonasoleovorans. Int J Biol Macromol 12:85–91

    Article  CAS  PubMed  Google Scholar 

  • Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1992) The mechanical properties of a thermoplastic elastomer produced by the bacterium Pseudomonasoleovorans. Rubber Chem Technol 65:761–777

    Article  CAS  Google Scholar 

  • Gross RA, Demello C, Lenz RW, Brandl H, Fuller RC (1989) Biosynthesis and characterization of poly (β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22:1106–1115

    Article  CAS  Google Scholar 

  • Hartmann R, Hany R, Pletscher E, Ritter A, Witholt B, Zinn M (2006) Tailor-made olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] by Pseudomonas putida GPo1: batch versus chemostat production. Biotechnol Bioeng 93:737–746

    Article  CAS  PubMed  Google Scholar 

  • Hazenberg W, Witholt B (1997) Efficient production of medium-chain-length poly(3-hydroxyalkanoates) from octane by Pseudomonas oleovorans: economic considerations. Appl Microbiol Biotechnol 48:588–596

    Article  CAS  Google Scholar 

  • Hazer B, Lenz RW, Fuller RC (1994) Biosynthesis of methyl-branched poly(beta-hydroxyalkanoate)s by Pseudomonasoleovorans. Macromolecules 27:45–49

    Article  CAS  Google Scholar 

  • Hazer B, Lenz RW, Fuller RC (1996) Bacterial production of poly-3-hydroxyalkanoates containing arylalkyl substituent groups. Polymer 37:5951–5957

    Article  CAS  Google Scholar 

  • Hofer H, Mandl T, Steiner W (2002) Acetopyruvate hydrolase production by Pseudomonas putida O1—optimization of batch and fed-batch fermentations. Appl Microbiol Biotechnol 60:293–299

    Article  CAS  PubMed  Google Scholar 

  • Huijberts GNM, Eggink G (1996) Production of poly(3-hydroxyalkanoates) by Pseudomonas putida KT2442 in continuous cultures. Appl Microbiol Biotechnol 46:233–239

    Article  CAS  Google Scholar 

  • Huijberts GNM, Eggink G, Dewaard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55:1949–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman GW, Wonink E, de Koning G, Preusting H, Witholt B (1992) Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains. Appl Microbiol Biotechnol 38:1–5

    Article  CAS  Google Scholar 

  • Jung K, Hany R, Rentsch D, Storni T, Egli T, Witholt B (2000) Characterization of new bacterial copolyesters containing 3-hydroxyoxoalkanoates and acetoxy-3-hydroxyalkanoates. Macromolecules 33:8571–8575

    Article  CAS  Google Scholar 

  • Jung K, Hazenberg W, Prieto M, Witholt B (2001) Two-stage continuous process development for the production of medium-chain-length poly(3-hydroxyalkanoates). Biotechnol Bioeng 72:19–24

    Article  CAS  PubMed  Google Scholar 

  • Kang HO, Chung CW, Kim HW, Kim YB, Rhee YH (2001) Cometabolic biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanaotes by Pseudomonas sp. DSY-82. Antonie Van Leeuvenhoek 80:185–191

    Article  CAS  Google Scholar 

  • Kellerhals MB, Hazenberg W, Witholt B (1999a) High cell density fermentations of Pseudomonas oleovorans for the production of mcl-PHAs in two-liquid phase media. Enzyme Microb Technol 24:111–116

    Article  CAS  Google Scholar 

  • Kellerhals MB, Kessler B, Witholt B (1999b) Closed-loop control of bacterial high-cell-density fed-batch cultures: production of mcl-PHAs by Pseudomonas putida KT2442 under single-substrate and cofeeding conditions. Biotechnol Bioeng 65:306–315

    Article  CAS  PubMed  Google Scholar 

  • Kellerhals MB, Kessler B, Witholt B, Tchouboukov A, Brandl H (2000) Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromolecules 33:4690–4698

    Article  CAS  Google Scholar 

  • Kessler B, Weusthuis R, Witholt B, Eggink G (2001) Production of microbial polyesters: fermentation and downstream processes. Adv Biochem Eng Biotechnol 71:159–182

    CAS  PubMed  Google Scholar 

  • Kim BS (2002) Production of medium chain length polyhydroxyalkanoates by fed-batch culture of Pseudomonas oleovorans. Biotechnol Lett 24:125–130

    Article  CAS  Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1995) Poly-3-hydroxyalkanoates containing unsaturated repeating units produced by Pseudomonas oleovorans. J Polym Sci A Polym Chem 33:1367–1374

    Article  CAS  Google Scholar 

  • Kim GJ, Lee IY, Choi DK, Yoon SC, Park YH (1996) High cell density cultivation of Pseudomonas putida BM01 using glucose. J Microbiol Biotechnol 6:221–224

    CAS  Google Scholar 

  • Kim O, Gross RA, Hammar WJ, Newmark RA (1996) Microbial synthesis of poly(beta-hydroxyalkanoates) containing fluorinated side-chain substituents. Macromolecules 29:4572–4581

    Article  CAS  Google Scholar 

  • Kim GJ, Lee IY, Yoon SC, Shin YC, Park YH (1997) Enhanced yield and a high production of medium-chain-length poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enzyme Microb Technol 20:500–505

    Article  CAS  Google Scholar 

  • Kim DY, Kim YB, Rhee YH (2000) Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int J Biol Macromol 28:23–29

    Article  CAS  PubMed  Google Scholar 

  • Kraak MN, Smits THM, Kessler B, Witholt B (1997) Polymerase C1 levels and poly(R-3-hydroxyalkanoate) synthesis in wild-type and recombinant Pseudomonas strains. J Bacteriol 179:4985–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans—effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langenbach S, Rehm BH, Steinbüchel A (1997) Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150:303–309

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee SY, Park S, Middelberg APJ (1999) Control of fed-batch fermentations. Biotechnol Adv 17:29–48

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Wong HH, Choi JI, Lee SH, Lee SC, Han CS (2000) Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol Bioeng 68:466–470

    Article  CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oeding V, Schlegel HG (1973) β-ketothiolase from Hydrogenomons eutropha H16 and its significance in the regulation of poly-β-hydroxybutyrate metabolism. Biochem J 134:239–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pouton CW, Akhtar S (1996) Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv Drug Deliv Rev 18:133–162

    Article  CAS  Google Scholar 

  • Preusting H, Kingma J, Witholt B (1991) Physiology and polyester formation of Pseudomonasoleovorans in continuous 2-liquid-phase cultures. Enzyme Microb Technol 13:770–780

    Article  CAS  Google Scholar 

  • Preusting H, Hazenberg W, Witholt B (1993a) Continuous production of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans in a high-cell-density, 2-liquid-phase chemostat. Enzyme Microb Technol 15:311–316

    Article  CAS  Google Scholar 

  • Preusting H, Vanhouten R, Hoefs A, Vanlangenberghe EK, Favrebulle O, Witholt B (1993b) High-cell-density cultivation of Pseudomonas oleovorans—growth and production of poly (3-hydroxyalkanoates) in 2-liquid phase batch and fed-batch systems. Biotechnol Bioeng 41:550–556

    Article  CAS  PubMed  Google Scholar 

  • Prieto MA, Kellerhals MB, Bozzato GB, Radnovic D, Witholt B, Kessler B (1999) Engineering of stable recombinant bacteria for production of chiral medium-chain-length poly-3-hydroxyalkanoates. Appl Environ Microbiol 65:3265–3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Q, Steinbüchel A, Rehm BH (1998) Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid beta-oxidation by acrylic acid. FEMS Microbiol Lett 167:89–94

    CAS  PubMed  Google Scholar 

  • Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH (1991) Continuous production of long-side-chain poly-beta-hydroxyalkanoates by Pseudomonas oleovorans. Appl Environ Microbiol 57:625–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH (1992) Effect of nitrogen limitation on long-side-chain poly-beta-hydroxyalkanoate synthesis by Pseudomonas resinovorans. Appl Environ Microbiol 58:744–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Q, Sierro N, Witholt B, Kessler B (2000) FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli. J Bacteriol 182:2978–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez RJ, Schripsema J, da Silva LF, Taciro MK, Pradella JGC, Gomez JGC (2003) Medium-chain-length polyhydroxyalkanoic acids (PHA(mcl)) produced by Pseudomonas putida IPT 046 from renewable sources. Eur Polym J 39:1385–1394

    Article  CAS  Google Scholar 

  • Scholz C, Fuller RC, Lenz RW (1994) Growth and polymer incorporation of Pseudomonasoleovorans on alkyl esters of heptanoic acid. Macromolecules 27:2886–2889

    Article  CAS  Google Scholar 

  • Solaiman DKY, Ashby RD, Foglia TA (1999) Medium-chain-length poly(beta-hydroxyalkanoate) synthesis from triacylglycerols by Pseudomonas saccharophila. Curr Microbiol 38:151–154

    Article  CAS  PubMed  Google Scholar 

  • Solaiman DKY, Ashby RD, Hotchkiss AT, Foglia TA (2006) Biosynthesis of medium-chain-length poly(hydroxyalkanoates) from soy molasses. Biotechnol Lett 28:157–162

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96

    Article  CAS  Google Scholar 

  • Sun Z, Ramsay J, Guay M, Ramsay B (2007) Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 74:69–77

    Article  CAS  PubMed  Google Scholar 

  • Thakor N, Trivedi U, Patel KC (2005) Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) by Comamonas testosteroni during cultivation on vegetable oils. Bioresour Technol 96:1843–1850

    Article  CAS  PubMed  Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonasaeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630

    Article  PubMed  Google Scholar 

  • van Hee P, Elumbaring ACMR, van der Lans RGJM, van der Wielen LAM (2006) Selective recovery of polyhydroxyalkanoate inclusion bodies from fermentation broth by dissolved-air flotation. J Colloid Interface Sci 297:595–606

    Article  PubMed  CAS  Google Scholar 

  • Weusthuis RA, Huijberts GNM, Eggink G (1997) Production of mcl-poly(hydroxyalkanoates) (review). In: Eggink G, Steinbüchel A, Poirer Y, Witholt B (eds) 1996 International symposium on bacterial polyhydroxyalkanoates. NRC Research Press, Ottawa

    Google Scholar 

  • Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol 25:111–121

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Ramsay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Ramsay, J.A., Guay, M. et al. Fermentation process development for the production of medium-chain-length poly-3-hyroxyalkanoates. Appl Microbiol Biotechnol 75, 475–485 (2007). https://doi.org/10.1007/s00253-007-0857-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0857-4

Keywords

Navigation