Skip to main content
Log in

Use of 2-deoxyglucose in liquid media for the selection of mutant strains of Penicillium echinulatum producing increased cellulase and β-glucosidase activities

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mutagenesis and selection were applied to a strain of Penicillium echinulatum by treating conidia with hydrogen peroxide or 1,2,7,8-diepoxyoctane and then by incubating the conidia for 48 h in broth containing microcrystalline cellulose washed in 0.5% (w/v) aqueous 2-deoxyglucose before plating them onto cellulose agar containing 1.5% (w/v) glucose from which colonies showing the fastest production of halos of cellulose hydrolysis were selected. This process resulted in the isolation of two new cellulase-secreting P. echinulatum mutants: strain 9A02S1 showing increased cellulase secretion (2 IU ml−1, measured as filter paper activity) in submerged culture in agitated flasks containing a mineral salts medium and 1% of cellulose, and strain 9A02D1, which proved more suitable for the production of cellulases in semisolid bran culture where it produced 23 IU of β-glucosidase per gram of wheat bran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antier P, Minjares A, Roussus A, Raimbault M, Viniegra G (1993) Pectinase-hyperproducing mutants of Aspergillus niger C28B25 for solid state fermentation of coffee pulp. Enzyme Microb Technol 15:254–260

    Article  CAS  Google Scholar 

  • Anwar MN, Suto M, Tomida F (1996) Isolation of mutants of Penicillium purpurogenum resistant to catabolite repression. Appl Microbiol Biotechnol 45:684–687

    Article  CAS  Google Scholar 

  • Aro N, Saloheimo A, Ilmén M, Penttilã M (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276:24309–24314

    Article  CAS  Google Scholar 

  • Aro N, Ilmén M, Saloheimo A, Penttilã M (2003) AceI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol 69:56–65

    Article  CAS  Google Scholar 

  • Barnett CC, Berka RM, Fowler T (1991) Cloning and amplification of the gene encoding an extracellular β-glucosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates. Biotechnology 9:562–566

    CAS  PubMed  Google Scholar 

  • Brown JA, Falconer DJ, Wood TM (1987) Isolation and properties of mutants of the fungus Penicillium pinophillum with enhanced cellulase and β-glucosidase production. Enzyme Microb Technol 9:47–52

    Article  Google Scholar 

  • Castillo MR, Gutierrez-Correa LJC, Tengerdy RP (1994) Mixed culture solid substrate fermentation for cellulolytic enzyme production. Biotechnol Lett 16:967–972

    Article  CAS  Google Scholar 

  • Chahal DS (1985) Solid-state fermentation with Trichoderma reesei for cellulase production. Appl Environ Microbiol 49:205–210

    Article  CAS  Google Scholar 

  • Chand P, Aruna A, Maqsood AM, Rao LV (2005) Novel mutation method for increased cellulase production. J Appl Microbiol 98:318–323

    Article  CAS  Google Scholar 

  • Dillon AJP, Paesi-Toresan S, Barp LB (1992) Isolation of cellulase-producing mutants from Penicillium sp. strains denominated 3MUV3424. Rev Bras Genet 15:491–498

    CAS  Google Scholar 

  • El-Gogary S, Leite A, Crivellaro O, Eveleigh D, El-Doory S (1989) Mechanism by which cellulose triggers cellobiohydrolase I gene expression in Trichoderma reesei. Proc Natl Acad Sci U S A 86:6138–6141

    Article  CAS  Google Scholar 

  • Farkas V, Labudova I, Bauers S, Ferenczy L (1981) Preparation of mutants of Trichoderma viride with increased production of cellulase. Folia Microbiol 26:105–110

    Article  Google Scholar 

  • Gadgil NJ, Daginawala HL, Chakrabarti T, Khanna P (1995) Enhanced cellulase production by a mutant of Trichoderma reesei. Enzyme Microb Technol 17:942–946

    Article  CAS  Google Scholar 

  • Gutierrez-Correa M, Tengerdy RP (1997) Production of cellulase on sugarcane bagasse by fungal mixed culture solid substrate fermentation. Biotechnol Lett 19:665–667

    Article  CAS  Google Scholar 

  • Henrique-Silva F, El-Gogary S, Carle-Urioste E, Matheucci JR, Crivellaro O, El-Dorry H (1996) Two regulatory regions controlling basal cellulose induced expression of the gene encoding cellobiohydrolase I of Trichoderma reesei are adjacent to its TATA box. Biochem Biophys Res Commun 228:229–237

    Article  CAS  Google Scholar 

  • Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10:358–364

    Article  CAS  Google Scholar 

  • Ilmén M, Thrane C, Pentillã ME (1996) The glucose repressor gene cre1 of Trichoderma: isolation and repression of a full-length and a truncated mutant form. Mol Gen Genet 251:451–460

    PubMed  Google Scholar 

  • Ilmén M, Saloheimo A, Onnela ML, Pentillã ME (1997) Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63:1298–1306

    Article  Google Scholar 

  • Joseph IN, Vallin C, Bravo C, Bugallo F, Marques C (1986) Intraspecific fusion between mutants of the cellulolytic strain Trichoderma hamatum. Cienc Biol 16:3–10

    Google Scholar 

  • Kubicek CP (1987) Involvement of a conidial endoglucanase and a plasma-membrane-bound β-glucosidase in the induction of endoglucanase synthesis by cellulose in Trichoderma reesei. J Gen Microbiol 33:1481–1487

    Google Scholar 

  • Manczinger L, Ferenczy L (1985) Somatic cell fusion of Trichoderma reesei resulting in new genetic combination. Appl Microbiol Biotechnol 22:72–76

    Article  CAS  Google Scholar 

  • Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon source and metals. J Bacteriol 73:269–278

    Article  CAS  Google Scholar 

  • Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Symp 21–33

  • Meza V, Moreno P, Tengerdy RP, Gutierrez-Correa M (1995) Transfer of a benomyl resistance marker by heat-inactivated Trichoderma reesei protoplast. Biotechnol Lett 17:827–832

    Article  CAS  Google Scholar 

  • Miettinen-Oinonen A, Suominen P (2002) Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Appl Environ Microbiol 68:3956–3964

    Article  CAS  Google Scholar 

  • Minjares-Carranco A, Trejo-Aguilar BA, Aguilar G, Viniegra-González G (1997) Physiological comparison between pectinase-producing mutants of Aspergillus niger adapted either to solid-state fermentation or submerged fermentation. Enzyme Microbial Technol 21:25–31

    Article  CAS  Google Scholar 

  • Picada JN, Khromov-Borisov NN, Henriques JAP (1999) Deletogenic activity of 1,2,7,8-diepoxyoctane in the Salmonella typhimurium tester strains TA102. Mutat Res 437:165–173

    Article  CAS  Google Scholar 

  • Saddler JN, Hogan CM, Louis-Seize A (1985) Comparison between the cellulase systems of Trichoderma harzianum E58 and Trichoderma reesei RUT C30. Appl Microbiol Biotechnol 22:139–145

    Article  CAS  Google Scholar 

  • Saloheimo A, Aro N, Ilmén M, Penttilã M (2000) Isolation of ace1 gene encoding a Cys2–His2 transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J Biol Chem 275:5817–5825

    Article  CAS  Google Scholar 

  • Smits JP, Sonsbeek HM, Rinzema A, Tramper J (1998) Solid-state fermentation—a mini review. Agro Food Ind Hi Tech 29–36

  • Sternberg D, Dorval S (1979) Cellulase production and ammonia metabolism in Trichoderma reesei on high levels of cellulose. Biotechnol Bioeng 21:181–191

    Article  CAS  Google Scholar 

  • Suzuki A, Sarangbin S, Kirimura K, Usami S (1996) Direct production of citric acid from starch by a 2-deoxyglucose-resistant mutant strain of Aspergillus niger. J Ferment Bioeng 81:320–323

    Article  CAS  Google Scholar 

  • Tangnu SK, Blanch HW, Wilke CR (1981) Enhanced production of cellulases, hemicellulase and β-glucosidase by Trichoderma reesei (Rut C-30). Biotechnol Bioeng 23:1837–1849

    Article  CAS  Google Scholar 

  • Torigoi E, Henrique-Silva F, Escobar-Vera J, Carle-Urioste C, Crivellaro O, El-Dorry H, El-Gogary S (1996) Mutants of Trichoderma reesei are defective in cellulose induction, but not basal expression of cellulase-encoding genes. Gene 173:199–203

    Article  CAS  Google Scholar 

  • Yoo YD, Pack MY (1992) Simultaneous production of endoglucanase and β-glucosidase using synthetic two cistron genes. Biotechnol Lett 14:77–82

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo J. P. Dillon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillon, A.J.P., Zorgi, C., Camassola, M. et al. Use of 2-deoxyglucose in liquid media for the selection of mutant strains of Penicillium echinulatum producing increased cellulase and β-glucosidase activities. Appl Microbiol Biotechnol 70, 740–746 (2006). https://doi.org/10.1007/s00253-005-0122-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0122-7

Keywords

Navigation