Skip to main content
Log in

Insect cell culture for industrial production of recombinant proteins

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Insect cells used in conjunction with the baculovirus expression vector system (BEVS) are gaining ground rapidly as a platform for recombinant protein production. Insect cells present several comparative advantages to mammalian cells, such as ease of culture, higher tolerance to osmolality and by-product concentration and higher expression levels when infected with a recombinant baculovirus. Here we review some of the recent developments in protein expression by insect cells and their potential application in large-scale culture. Our current knowledge of insect cell metabolism is summarised and emphasis is placed on elements useful in the rational design of serum-free media. The culture of insect cells in the absence of serum is reaching maturity, and promising serum substitutes (hydrolysates, new growth and production-enhancing factors) are being evaluated. Proteolysis is a problem of the BEVS system due to its lytic nature, and can, therefore, be a critical issue in insect cell bioprocessing. Several cell- or baculovirus proteases are involved in degradation events during protein production by insect cells. Methods for proteolysis control, the optimal inhibitors and culture and storage conditions which affect proteolysis are discussed. Finally, engineering issues related to high-density culture (new bioreactor types, gas exchange, feeding strategies) are addressed in view of their relevance to large-scale culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agathos SN (1991) Production scale insect cell culture. Biotechnol Adv 9:51–68

    Article  Google Scholar 

  • Agathos SN (1996) Insect cell bioreactors. Cytotechnology 20:173-189

    CAS  Google Scholar 

  • Ayres MD, Howard SC, Kuzio J, Ferber-Lopez M, Possee RD (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605

    Article  CAS  PubMed  Google Scholar 

  • Barnett BB (1998) Insect cell culture technology. Art Sci 17:1–7

    Google Scholar 

  • Bédard C, Tom R, Kamen A (1993) Growth, nutrient consumption, and end-product accumulation in Sf-9 and BTI-EAA insect cell cultures: insights into growth limitation and metabolism. Biotechnol Prog 9:615–624

    PubMed  Google Scholar 

  • Bédard C, Kamen A, Tom R, Massie B (1994) Maximization of recombinant protein yield in the insect cell/baculovirus system by one-time addition of nutrients to high-density batch cultures. Cytotechnology 15:129–138

    PubMed  Google Scholar 

  • Bédard C, Perret S, Kamen AA (1997) Fed-batch culture of Sf-9 cells supports 3x107 cells per ml and improves baculovirus-expressed recombinant protein yields. Biotechnol Lett 19:629–632

    Article  Google Scholar 

  • Bhatia R, Jesionowski G, Ferrance J, Ataai MM (1997) Insect cell physiology. Cytotechnology 24:1–9

    Article  CAS  Google Scholar 

  • Bibila TA, Robinson DK (1995) In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnol Prog 11:1–13

    CAS  PubMed  Google Scholar 

  • Blom WR, Kunst A, Schie BJ van, Luli GW (1998) Quest International Flavors and Food Ingredients Company, USA

  • Bonning BC, Roelvink PW, Vlak JM, Possee RD, Hammock BD (1994) Superior expression of juvenile hormone esterase and β-galactosidase from the basic protein promoter of Autographa californica nuclear polyhedrosis virus compared to the p10 protein and polyhedrin promoters. J Gen Virol 75:1551–1556

    CAS  PubMed  Google Scholar 

  • Breitbach K, Jarvis DL (2001) Improved glycosylation of a foreign protein by Tn-5B1-4 cells engineered to express mammalian glycosyltransferases. Biotechnol Bioeng 74:230–239

    Article  CAS  PubMed  Google Scholar 

  • Caron AW, Archambault J, Massie B (1990) High-level recombinant protein production in bioreactors using the baculovirus-insect cell expression system. Biotechnol Bioeng 36:1133–1140

    CAS  Google Scholar 

  • Caron AW, Tom RL, Kamen AA, Massie B (1994) Baculovirus expression system scaleup by perfusion of high-density Sf9 cell cultures. Biotechnol Bioeng 43:881–891

    Google Scholar 

  • Cha HJ, Pham M-Q, Rao G, Bentley WE (1997) Expression of green fluorescent protein in insect larvae and its application for heterologous protein production. Biotechnol Bioeng 56:239–247

    Article  CAS  Google Scholar 

  • Chan LCL, Greenfield PF, Reid S (1998) Optimising fed-batch production of recombinant proteins using the baculovirus expression vector system. Biotechnol Bioeng 59:178–188

    Article  CAS  PubMed  Google Scholar 

  • Chico E, Jäger V (2000) Perfusion culture of baculovirus-infected BTI-Tn-5B1-4 insect cells: a method to restore cell-specific β-trace glycoprotein productivity at high cell density. Biotechnol Bioeng 70:574–586

    Article  CAS  PubMed  Google Scholar 

  • Chiou TW, Hsieh YC, Ho CS (2000) High density culture of insect cells using rational medium design and feeding strategy. Bioprocess Eng 22:483–491

    Article  CAS  Google Scholar 

  • Chisti Y (2000) Animal-cell damage in sparged bioreactors. Trends Biotechnol 18:420–432

    Article  CAS  PubMed  Google Scholar 

  • Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180–187

    Article  CAS  PubMed  Google Scholar 

  • Chung IS, Taticek RA, Shuler ML (1993) Production of human alkaline phosphatase, a secreted, glycosylated protein, from a baculovirus expression system and the attachment-dependent cell line Trichoplusia ni BTI-Tn 5B1-4 using a split-flow, air-lift bioreactor. Biotechnol Prog 9:675–678

    CAS  PubMed  Google Scholar 

  • Cowger NL, O'Connor KC, Bivins JE (1997) Influence of simulated microgravity on the longevity of insect-cell culture. Enzyme Microb Technol 20:326–332

    Article  CAS  PubMed  Google Scholar 

  • Cowger NL, O'Connor KC, Hammond TG, Lacks DJ, Navar GL (1999) Characterization of bimodal cell death of insect cells in a rotating-wall vessel and shaker flask. Biotechnol Bioeng 64:14–26

    Article  CAS  PubMed  Google Scholar 

  • Cruz PE, Martins PC, Alves PM, Peixoto CC, Santos H, Moreira JL, Carrondo MJT (1999) Proteolytic activity in infected and noninfected insect cells: degradation of HIV-1 Pr55gag particles. Biotechnol Bioeng 65:133–143

    Article  CAS  PubMed  Google Scholar 

  • Danner DJ, Godwin GP, Kassay K, Gorfien SF (1995) In: Baculovirus and insect cell gene expression conference, Pinehurst, N.C.

    Google Scholar 

  • Davis TR, Wickham TJ, McKenna KA, Granados RR, Shuler ML, Wood HA (1993) Comparative recombinant protein production of eight insect cell lines. In Vitro Cell Dev Biol 29:388–390

    Google Scholar 

  • Dee KU, Shuler ML, Wood HA (1997) Inducing single-cell suspension of BTI-TN5B1-4 insect cells. I. The use of sulfated polyanions to prevent cell aggregation and enhance recombinant protein production. Biotechnol Bioeng 54:191–205

    Article  CAS  Google Scholar 

  • Deramoudt F-X, Monnet S, Rabaud J-N, Quiot J-M, Cerutti M, Devauchelle G, Kaczorek M (1994) Production of a recombinant protein in a high density insect cell cytoflow reactor. In: Spier RE, Griffiths JB, Berthold W (eds) Animal cell technology: products of today, prospects for tomorrow. Butterworth-Heinemann, Oxford, pp 222–226

    Google Scholar 

  • Deutschmann SM, Jäger V (1994) Optimization of the growth conditions of Sf21 insect cells for high-density perfusion culture in stirred-tank bioreactors. Enzyme Microb Technol 16:506–512

    Google Scholar 

  • deZengotita VM, Schmelzer AE, Miller WM (2002) Characterization of hybridoma cell responses to elevated pCO(2) and osmolality: intracellular pH, cell size, apoptosis, and metabolism. Biotechnol Bioeng 77:369–380

    Article  CAS  PubMed  Google Scholar 

  • DiFalco MR, Bakopanos E, Patricelli M, Chan G, Congote LF (1997) The influence of various insect cell lines, p10 and polyhedrin promoters in the production of secreted insulin-like growth factor-interleukin-3 chimeras in the baculovirus expression system. J Biotechnol 56:49–56

    Article  CAS  PubMed  Google Scholar 

  • Donaldson MS, Shuler ML (1998) Low-cost serum-free medium for the BTI-Tn5B1-4 insect cell line. Biotechnol Prog 14:573–579

    Article  CAS  PubMed  Google Scholar 

  • Donaldson M, Wood HA, Kulakosky PC, Shuler ML (1999) Glycosylation of a recombinant protein in the Tn5B1-4 insect cell line: Influence of ammonia, time of harvest, temperature, and dissolved oxygen. Biotechnol Bioeng 63:255–262

    Google Scholar 

  • Doverskog M, Han L, Häggström L (1998) Cystine/cysteine metabolism in cultured Sf9 cells: influence of cell physiology. Cytotechnology 26:91–102

    Article  CAS  Google Scholar 

  • Doverskog M, Bertram E, Ljunggren J, Öhman L, Sennerstam R, Häggström L (2000) Cell cycle progression in serum-free cultures of Sf9 insect cells: modulation by conditioned medium factors and implications for proliferation and productivity. Biotechnol Prog 16:837–846

    Google Scholar 

  • Drews M, Paalme T, Vilu R (1995) The growth and nutrient utilization of the insect cell line Spodoptera frugiperda Sf9 in batch and continuous culture. J Biotechnol 40:187–198

    Article  CAS  Google Scholar 

  • Elias CB, Zeiser A, Bédard C, Kamen AA (2000) Enhanced growth of Sf-9 cells to a maximum density of 5.2x107 cells per ml and production of β-galactosidase at high cell density by fed batch culture. Biotechnol Bioeng 68:381–388

    Article  CAS  PubMed  Google Scholar 

  • Ferkovich SM, Oberlander H (1991) Growth factors in invertebrate in vitro culture. In Vitro Cell Dev Biol 27:483–486

    Google Scholar 

  • Ferrance JP, Goel A, Ataai MM (1993) Utilization of glucose and amino acids in insect cell cultures: quantifying the metabolic flows within the primary pathways and medium development. Biotechnol Bioeng 42:697–707

    CAS  Google Scholar 

  • Francis KM, O'Connor KC, Spaulding GF (1997) Cultivation of fall armyworm ovary cells in simulated microgravity. In Vitro Cell Dev Biol 33:332–336

    CAS  Google Scholar 

  • Franek F, Katinger H (2002) Specific effects of synthetic oligopeptides on cultured animal cells. Biotechnol Prog 18:155–158

    Article  CAS  PubMed  Google Scholar 

  • Franek F, Hohenwarter O, Katinger H (2000) Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cell cultures. Biotechnol Prog 16:688–692

    Google Scholar 

  • Garnier L, Cahoreau C, Devauchelle G, Cérutti M (1995) The intracellular domain of the rabbit prolactin receptor is able to promote the secretion of a passenger protein via an unusual secretory pathway in lepidopteran cells. Bio/Technology 13:1101–1104

    CAS  Google Scholar 

  • Garnier A, Voyer R, Tom R, Perret S, Jardin B, Kamen A (1996) Dissolved carbon dioxide accumulation in a large scale and high density production of TGFβ with baculovirus infected Sf-9 cells. Cytotechnology 22:53–63

    CAS  Google Scholar 

  • Godwin G, Belisle B, DeGiovanni A, Khler J, Gong T, Wojchowski D (1990) Serum-free growth and recombinant EPO expression in Spodoptera frugiperda (Sf-9) insect cells. In Vitro Cell Dev Biol 26:19A

    Google Scholar 

  • Godwin G, Danner D, Gorfien S (1995) Express Five TM SFM: a new serum-free medium for growth of BTI-TN-5B1-4 cells and expression of recombinant proteins. Focus 17:58–60

    Google Scholar 

  • Gorenflo VM, Pfeifer TA, Grigliatti TA, Lesnicki G, Kilburn DG, Piret JM (2001) CBD-Factor X fusion protein production by a stable transformed Sf9 insect cell line in a high cell density perfusion culture. Abstr Pap Am Chem Soc 221:147–BIOT

    Google Scholar 

  • Gotoh T, Miyazaki Y, Kikuchi K, Bentley WE (2001a) Investigation of sequential behavior of carboxyl protease and cysteine protease activities in virus-infected Sf-9 insect cell culture by inhibition assay. Appl Microbiol Biotechnol 56:742–749

    Article  CAS  PubMed  Google Scholar 

  • Gotoh T, Miyazaki Y, Sato W, Kikuchi KI, Bentley WE (2001b) Proteolytic activity and recombinant protein production in virus-infected Sf-9 insect cell cultures supplemented with carboxyl and cysteine protease inhibitors. J Biosci Bioeng 92:248–255

    Article  CAS  Google Scholar 

  • Grabber R, Ernst W, Doblhoff-Dier O, Sara M, Katinger H (1997) Expression of foreign proteins on the surface of Autographa californica nuclear polyhedrosis virus. BioTechniques 22:730–735

    PubMed  Google Scholar 

  • Grace TDC (1962) Establishment of four strains of cells from insect tissues grown in vitro. Nature 195:788–789

    CAS  Google Scholar 

  • Granados RR, Federici BA (1986) The biology of baculoviruses. CRC, Boca Raton, Fla.

  • Granados RR, Guoxun L, Derksen ACG, McKenna KA (1994) A new insect cell line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single enveloped nuclear polyhedrosis virus. J Invertebr Pathol 64:260–266

    Google Scholar 

  • Grosch H-W, Hasilik A (1998) Protection of proteolysis-prone recombinant proteins in baculovirus expression systems. BioTechniques 24:930–934

    Google Scholar 

  • Ha SH, Park TH (1997) Efficient production of recombinant protein in Spodoptera frugiperda/AcNPV system utilizing silkworm hemolymph. Biotechnol Lett 19:1087–1091

    Article  CAS  Google Scholar 

  • Ha SH, Park TH, Kim S-E (1996) Silkworm hemolymph as substitute for fetal bovine serum in insect cell culture. Biotechnol Tech 10:401–406

    CAS  Google Scholar 

  • Hasegawa A, Yamashita H, Kondo S, Kiyota T, Hayashi H, Yoshizaki H, Murakami A, Shiratsuchi M, Mori T (1988) Proteose peptone enhances production of tissue-type plasminogen activator from human diploid fibroblasts. Biochem Biophys Res Commun 150:1230–1236

    CAS  PubMed  Google Scholar 

  • Hawtin RE, Arnold K, Ayres MD, Zanotto PMD, Howard SC, Gooday GW, Chappell LH, Kitts PA, King LA, Possee RD (1995) Identification and preliminary characterization of a chitinase gene in the Autographa californica nuclear polyhedrosis virus genome. Virology 212:673–685

    Article  CAS  PubMed  Google Scholar 

  • Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW, King LA, Kuzio JA, Possee RD (1997) Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238:243–253

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa Y, Ohnishi A (1998) Cell growth activity of growth-blocking peptide. Biochem Biophys Res Commun 250:194–199

    Article  CAS  PubMed  Google Scholar 

  • Heidemann R, Zhang C, Qi H, Rule JL, Rozales C, Park S, Chuppa S, Ray M, Michales J, Konstantinov K, Naveh D (2000) The use of peptones as medium additives for the production of a recombinant therapeutic protein in high density perfusion cultures of mammalian cells. Cytotechnology 32:157–167

    Article  CAS  Google Scholar 

  • Hensler WT, Agathos SN (1994) Evaluation of monitoring approaches and effects of culture conditions on recombinant protein production in baculovirus-infected insect cells. Cytotechnology 15:177–186

    CAS  PubMed  Google Scholar 

  • Hensler W, Singh V, Agathos SN (1994) Sf9 insect cell growth and β-galactosidase production in serum and serum-free media. Ann N Y Acad Sci 745:149–166

    CAS  PubMed  Google Scholar 

  • Hill-Perkins M, Possee R (1990) A baculovirus expression vector derived from the basic protein promoter of Autographa californica nuclear polyhedrosis virus. J Gen Virol 71:971–976

    CAS  PubMed  Google Scholar 

  • Hink WF (1970) Established insect cell line from the cabbage looper, Trichoplusia ni. Nature 226:466–467

    Google Scholar 

  • Hink WF, Thomsen DR, Davidson DJ, Meyer AL, Castellino FJ (1991) Expression of three recombinant proteins using baculovirus vectors in 23 insect cell lines. Biotechnol Prog 7:9–14

    CAS  PubMed  Google Scholar 

  • Hollister JR, Jarvis DL (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian beta 1,4-galactosyltransferase and alpha 2,6-sialyltransferase genes. Glycobiology 11:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hom LG, Volkman LE (1998) Preventing proteolytic artifacts in the baculovirus expression system. BioTechniques 25:18–20

    CAS  PubMed  Google Scholar 

  • Hu Y-C, Bentley WE (1999) Enhancing yield of infectious bursal disease virus structural proteins in baculovirus expression systems: focus on media, protease inhibitors, and dissolved oxygen. Biotechnol Prog 15:1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Ikonomou L, Bastin G, Schneider Y-J, Agathos SN (2001) Design of an efficient medium for insect cell growth and recombinant protein production. In Vitro Cell Dev Biol Animal 37:549–559

    Article  CAS  PubMed  Google Scholar 

  • Ikonomou L, Peeters-Joris C, Schneider Y-J, Agathos SN (2002a) Supernatant proteolytic activities of High-Five insect cells grown in serum-free culture. Biotechnol Lett 24:965–969

    Article  CAS  Google Scholar 

  • Ikonomou L, Drugmand J-C, Bastin G, Schneider Y-J, Agathos SN (2002b) Microcarrier culture of lepidopteran cell lines: implications for growth and recombinant protein production. Biotechnol Progr 18:1345–1355

    Google Scholar 

  • Jäger V (1996) Perfusion bioreactors for the production of recombinant proteins in insect cells. Cytotechnology 20: 191–198

    Google Scholar 

  • Jain D, Ramasubramanyan K, Gould S, Seamans C, Wang S, Lenny A, Silberklang M (1991) Production of antistasin using the baculovirus expression system. In: Hatch RT, Goochee CF, Moreira A, Alroy Y (eds) Expression systems and processes for rDNA products. (Vol 477) American Chemical Society, Washington, D.C.

  • Jarvis DL, Howe D, Aumiller JJ (2001) Novel baculovirus expression vectors that provide sialylation of recombinant glycoproteins in lepidopteran insect cells. J Virol 75:6223–6227

    Article  CAS  PubMed  Google Scholar 

  • Jesionowski GA, Ataai MM (1997) An efficient medium for high protein production in the insect cell/baculovirus expression system. Biotechnol Prog 13:355–360

    Article  CAS  Google Scholar 

  • Joshi L, Shuler ML, Wood HA (2001) Production of a sialylated N-linked glycoprotein in insect cells. Biotechnol Prog 17:822–827

    Article  CAS  PubMed  Google Scholar 

  • Joosten CE, Shuler ML (2003) Production of a sialylated N-linked glycoprotein in insect cells: role of glycosidases and effect of harvest time on glycosylation. Biotechnol Prog 19:193–201

    Google Scholar 

  • Keay L (1975) Autoclavable low cost serum-free cell culture media: the growth of L cells and BHK cells on peptones. Biotechnol Bioeng 17:745–764

    Google Scholar 

  • Keay L (1976) Autoclavable low cost serum-free cell culture media: the growth of established cell lines and production of viruses. Biotechnol Bioeng 18:363–382

    CAS  PubMed  Google Scholar 

  • Kim EJ, Rhee WJ, Park TH (2001) Isolation and characterization of an apoptosis-inhibiting component from the hemolymph of Bombyx mori. Biochem Biophys Res Commun 285:224–228

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim EJ, Park TH (2000) Fed-batch culture of insect cells with exponential feeding of amino acid and yeastolate solution. Bioprocess Eng 23:367–370

    Article  Google Scholar 

  • Kimura R, Miller WM (1997) Glycosylation of CHO-derived recombinant tPA produced under elevated pCO(2). Biotechnol Prog 13:311–317

    Article  CAS  PubMed  Google Scholar 

  • Kioukia N, Nienow AW, Emery AN, Al-Rubeai M (1995) Physiological and environmental factors affecting the growth of insect cells and infection with baculovirus. J Biotechnol 38:243–251

    Article  CAS  PubMed  Google Scholar 

  • Klaus DM (1998) Microgravity and its implications for fermentation biotechnology. Trends Biotechnol 16:369–373

    Google Scholar 

  • Kost TA, Ignar DM, Clay WC, Andrews J, Leray JD, Overton L, Hoffman CR, Kilpatrick KE, Ellis B, Emerson DL (1997) Production of a urokinase plasminogen activator-IgG fusion protein (uPA-IgG) in the baculovirus expression system. Gene 190:139–144

    Article  CAS  PubMed  Google Scholar 

  • Landureau JC, Jolles P (1969) Etude des exigences d'une lignée de cellules d'insectes (Souche EPa). I. Acides amines. Exp Cell Res 54:391–398

    CAS  PubMed  Google Scholar 

  • LaPrise MH, Grondin F, Dubois CM (1998) Enhanced TGFβ1 maturation in High Five cells coinfected with recombinant baculovirus encoding the convertase furin/pace: improved technology for the production of recombinant proproteins in insect cells. Biotechnol Bioeng 58:85–91

    Article  CAS  PubMed  Google Scholar 

  • Lawrie AM, King AL, Ogden JE (1995) High level synthesis and secretion of human urokinase using a late gene promoter of the Autographa californica nuclear polyhedrosis virus. J Biotechnol 39:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lin GY, Li GX, Granados RR, Blissard GW (2001) Stable cell lines expressing baculovirus P35: resistance to apoptosis and nutrient stress, and increased glycoprotein secretion. In Vitro Cell Dev Biol Anim 37:293–302

    Article  CAS  PubMed  Google Scholar 

  • Lindsay DA, Betenbaugh MJ (1992) Quantification of cell culture factors affecting recombinant protein yields in baculovirus-infected insect cells. Biotechnol Bioeng 39:614–618

    CAS  Google Scholar 

  • Lynn DE (1996) Development and characterization of insect cell lines. Cytotechnology 20:3–11

    Google Scholar 

  • Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, Sati Y, Furusawa M (1985) Production of human a-interferon in silkworm using a baculovirus vector. Nature 315:592–594

    CAS  PubMed  Google Scholar 

  • Maiorella B, Inlow D, Shauger A, Harano D (1988) Large-scale insect cell-culture for recombinant protein production. Bio/Technology 6:1406–1410

    CAS  Google Scholar 

  • Marteijn RC, Jurrius O, Dhont J, De Gooijer CD, Tramper J, Martens DE (2003) Optimization of a feed medium for fed-batch culture of insect cells using a genetic algorithm. Biotechnol Bioeng 81:269–278

    Google Scholar 

  • Martensen PM, Justesen J (2001) Specific inhibitors prevent proteolytic degradation of recombinant proteins expressed in High Five cells. BioTechniques 30:782–788

    CAS  PubMed  Google Scholar 

  • McIntosh AH, Maramorosch K (1994) Insect cell biotechnology. CRC, Boca Raton, Florida

  • McKenna KA, Hong H, vanNumen E, Granados RR (1998) Establishment of new Trichoplusia ni cell lines in serum-free medium for baculovirus and recombinant protein production. J Invertebr Pathol 71:82–90

    Google Scholar 

  • Mendonça RZ, Palomares LA, Ramirez OT (1999) An insight into insect cell metabolism through selective nutrient manipulation. J Biotechnol 72:61–75

    Article  Google Scholar 

  • Miller LK (1997) The baculoviruses. Plenum, New York

  • Mitchell-Logean C, Murhammer DW (1997) Bioreactor headspace purging reduces dissolved carbon dioxide accumulation in insect cell cultures and enhances cell growth. Biotechnol Prog 13:875–877

    Article  CAS  Google Scholar 

  • Mizrahi A (1977) Primatone RL in mammalian cell culture media. Biotechnol Bioeng 19:1557–1561

    CAS  PubMed  Google Scholar 

  • Monsma SA, Scott M (1997) BacVector-3000: an engineered baculovirus designed for greater protein stability. Innovations 16–19

  • Montgomery DC, Runger GC (1999) Applied statistics and probability for engineers, 2nd edn. Wiley, New York

  • Murhammer DW (1991) The use for insect cell culture for recombinant protein synthesis: engineering aspects. Appl Biochem Biotechnol 31:283–310

    CAS  PubMed  Google Scholar 

  • Naggie S, Bentley WE (1998) Appearance of protease activities coincides with p10 and polyhedrin-driven protein production in the baculovirus expression system: effects on yield. Biotechnol Prog 14:227–232

    Article  CAS  PubMed  Google Scholar 

  • Naggie S, Hu Y-C, Pulliam-Holoman TR, Bentley WE (1997) Substrate (gelatin) gel electrophoretic method for analysis of protease activity in insect (Sf-9) cells. Biotechnol Tech 11:297–300

    Article  CAS  Google Scholar 

  • Nguyen B, Jarnagin K, Williams S, Chan H, Barnett J (1993) Fed-batch culture of insect cells: a method to increase the yield of recombinant human nerve growth factor (rhNGF) in the baculovirus expression system. J Biotechnol 31:205–217

    Article  CAS  PubMed  Google Scholar 

  • Nishino H, Mitsuhashi J (1995) Effects of some mammalian growth promoting substances on insect cell cultures. In Vitro Cell Dev Biol Animal 31:822–823

    CAS  Google Scholar 

  • Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DIC (1999) Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium. Biotechnol Bioeng 62:324–335

    Article  CAS  PubMed  Google Scholar 

  • Ogonah OW, Freedman RB, Jenkins N, Patel K, Rooney BC (1996) Isolation and characterization of an insect cell line able to perform complex N-linked glyosylation on recombinant proteins. Bio/Technology 14:197–202

    CAS  Google Scholar 

  • Ohashi R, Singh V, Hamel J-FP (2001) Perfusion cell culture in disposable bioreactors. In: Lindner-Olsson E, Chatzissavidou N, Lüllau E (eds) Animal cell technology: from target to market. Kluwer Academic, Dordrecht, pp 403–409

    Google Scholar 

  • Ohkawa T, Majima K, Maeda S (1994) A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus. J Virol 68:6619–6625

    CAS  PubMed  Google Scholar 

  • Öhman L, Ljunggren J, Häggström L (1995) Induction of a metabolic switch in insect cells by substrate-limited fed batch cultures. Appl Microbiol Biotechnol 43:1006–1013

    Google Scholar 

  • Öhman L, Alarcon M, Ljunggren J, Ramqvist A-K, Häggström L (1996) Glutamine is not an essential amino acid for Sf-9 insect cells. Biotechnol Lett 18:765–770

    Google Scholar 

  • Palomares LA, Joosten CE, Hughes PR, Granados RR, Shuler ML (2003) Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins. Biotechnol Prog 19:185–192

    Google Scholar 

  • Pfeifer TA, Guarna MM, Kwan EM, Lesnicki G, Theilmann DA, Grigliatti TA, Kilburn DG (2001) Expression analysis of a modified Factor X in stably transformed insect cell lines. Protein Expr Purif 23:233–241

    Article  CAS  PubMed  Google Scholar 

  • Pham M-Q, Naggie S, Wier M, Cha HJ, Bentley WE (1999) Human interleukin-2 production in insect (Trichoplusia ni) larvae: effects and partial control of proteolysis. Biotechnol Bioeng 62:175–182

    Article  CAS  PubMed  Google Scholar 

  • Possee RD (1997) Baculoviruses as expression vectors. Curr Opin Biotechnol 8:569–572

    Article  CAS  PubMed  Google Scholar 

  • Price PJ, Gorfien S, Danner D (1998) Technical Note. Life Technologies, USA

  • Pyle LE, Barton P, Fujiwara Y, Mitchell A, Fidge N (1995) Secretion of biologically active human proapolipoprotein A-I in a baculovirus-insect cell system: protection from degradation by protease inhibitors. J Lipid Res 36:2355–2361

    CAS  PubMed  Google Scholar 

  • Radford KM, Reid S, Greenfield PF (1997) Substrate limitation in the baculovirus expression vector system. Biotechnol Bioeng 56:32–44

    Article  CAS  Google Scholar 

  • Ravallec-Plé R, Gilmartin L, Van Wormhoudt A, Le Gal Y (2000) Influence of the hydrolysis process on the biological activities of protein hydrolysates from cod (Gadus morhua) muscle. J Sci Food Agric 80:2176–2180

    Article  Google Scholar 

  • Ravallec-Plé R, Charlot C, Pires C, Braga V, Batista I, Van Wormhoudt A, Le Gal Y, Fouchereau-Peron M (2001) The presence of bioactive peptides in hydrolysates prepared from processing waste of sardine (Sardina pilchardus). J Sci Food Agric 81:1120–1125

    Article  Google Scholar 

  • Reiter M, Mundt W, Dorner F, Grillberger L, Mitterer A (2001) Patent WO 01/23527. Baxter Aktiengesellschaft, Austria

    Google Scholar 

  • Reuveny S, Kemp CW, Eppstein L, Shiloach J (1992) Carbohydrate metabolism in insect cell cultures during cell growth and recombinant protein production. Ann N Y Acad Sci 665:230–237

    CAS  PubMed  Google Scholar 

  • Reuveny S, Kim YJ, Kemp CW, Shiloach J (1993) Production of recombinant proteins in high-density insect cell cultures. Biotechnol Bioeng 42:235–239

    CAS  Google Scholar 

  • Rhee WJ, Park TH (2000) Silkworm hemolymph inhibits baculovirus-induced insect cell apoptosis. Biochem Biophys Res Commun 271:186–190

    Article  CAS  PubMed  Google Scholar 

  • Rhee WJ, Kim EJ, Park TH (1999) Kinetic effect of silkworm hemolymph on the delayed host cell death in an insect cell-baculovirus system. Biotechnol Prog 15:1028–1032

    Article  CAS  PubMed  Google Scholar 

  • Rhiel M, Mitchell-Logean CM, Murhammer DW (1997) Comparison of Trichoplusia ni BTI-Tn-5B1-4 (High Five TM) and Spodoptera frugiperda Sf-9 insect cell line metabolism in suspension cultures. Biotechnol Bioeng 55:909–920

    Article  CAS  Google Scholar 

  • Rice JW, Rankl NB, Gurganus TM, Marr CM, Barna JB, Walters MM, Burns DJ (1993) A comparison of large-scale Sf9 insect cell growth and protein production: stirred vessel vs. airlift. BioTechniques 15:1052

    CAS  PubMed  Google Scholar 

  • Saarinen MA, Murhammer DW (2000) Culture in the rotating-wall vessel affects recombinant protein production capability of two insect cell lines in different manners. In Vitro Cell Dev Biol Animal 36:362–366

    Article  CAS  Google Scholar 

  • Sasagawa H, Nakahara Y, Kiuchi M (2001) An ENF peptide, Bombyx mori paralytic peptide, induces cell proliferation and morphological changes in Bombyx cell lines. In Vitro Cell Dev Biol Animal 37:638–640

    Article  CAS  PubMed  Google Scholar 

  • Sauer PW, Burky JE, Wesson MC, Sternard HD, Qu L (2000) A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol Bioeng 67:585–597

    CAS  PubMed  Google Scholar 

  • Schlaeger E-J (1996a) Medium design for insect cell culture. Cytotechnology 20:57–70

    CAS  Google Scholar 

  • Schlaeger E-J (1996b) The protein hydrolysate, Primatone RL, is a cost-effective multiple growth promoter of mammalian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J Immunol Methods 194:191–199

    Article  CAS  PubMed  Google Scholar 

  • Schlaeger E-J, Foggetta M, Vonach JM, Christensen K (1993) SF-1, a low cost culture medium for the production of recombinant proteins in baculovirus infected insect cells. Biotechnol Tech 7:183–188

    CAS  Google Scholar 

  • Schmid G, Bischoff A (1998) Proteolytic activities in the baculovirus-insect cell expression system. In: Merten O-W, Perrin P, Griffiths B (eds) New developments and new applications in animal cell technology. Kluwer Academic, Dordrecht, pp 303–306

  • Shuler ML (1995) Baculovirus expression systems and biopesticides. Wiley-Liss, New York

  • Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:149–158

    Article  CAS  Google Scholar 

  • Slack JM, Kuzio J, Faulkner P (1995) Characterization of v-cath, a cathepsin L-like proteinase expressed by the baculovirus Autographa californica multiple nuclear polyhedrosis virus. J Gen Virol 76:1091–1098

    CAS  PubMed  Google Scholar 

  • Smith GE, Summers MD, Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3:2156–2165

    CAS  PubMed  Google Scholar 

  • Sommer R (1996) In: 9th international symposium on yeasts, Sydney

  • Stavroulakis DA, Kalogerakis N, Behie LA, Iatrou K (1991) Kinetic data for the Bm-5 insect cell line in repeated-batch suspension cultures. Biotechnol Bioeng 38:116–126

    CAS  Google Scholar 

  • Sugiura T, Amann E (1996) Properties of two insect cell lines useful for the baculovirus expression system in serum-free culture. Biotechnol Bioeng 51:494–499

    Article  CAS  Google Scholar 

  • Suzuki T, Kanaya T, Okazaki H, Ogawa K, Usami A, Watanabe H, Kadono-Okuda K, Yamakawa M, Sato H, Mori H, Takahashi S, Oda K (1997) Efficient protein production using a Bombyx mori nuclear polyhedrosis virus lacking the cysteine proteinase gene. J Gen Virol 78:3073–3080

    CAS  PubMed  Google Scholar 

  • Taticek RA, Shuler ML (1997) Effect of elevated oxygen and glutamine levels on foreign protein production at high cell densities using the insect cell-baculovirus expression system. Biotechnol Bioeng 54:142–152

    Article  CAS  Google Scholar 

  • Taticek RA, Lee CWT, Shuler ML (1994) Large-scale insect and plant cell culture. Curr Opin Biotechnol 5:165–174

    CAS  PubMed  Google Scholar 

  • Taylor WG, Dworkin RA, Pumper RW, Evans VJ (1972) Biological efficacy of several commercially available peptones for mammalian cells in culture. Exp Cell Res 74:275–279

    CAS  PubMed  Google Scholar 

  • Tom RL, Debanne MT, Bédard C, Caron AW, Massie B, Kamen AA (1995) Improved yields of the extracellular domain of the epidermal growth factor receptor produced using the baculovirus expression system by medium replacement following infection. Appl Microbiol Biotechnol 44:53–58

    Article  CAS  PubMed  Google Scholar 

  • Tramper J, Vlak JM, Gooijer CD de (1996) Scale up aspects of sparged insect-cell bioreactors. Cytotechnology 20:221–229

    Google Scholar 

  • Tremblay GB, Mejia NR, Mackenzie RE (1992) The NaDP-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase is not expressed in Spodoptera frugiperda cells. J Biol Chem 267:8281–8285

    CAS  PubMed  Google Scholar 

  • Trinh K, Garcia-Briones M, Hink F, Chalmers JJ (1994) Quantification of damage to suspended insect cells as a result of bubble rupture. Biotechnol Bioeng 43:37–45

    Google Scholar 

  • van Lier FLJ, van den Hombergh JPTW, de Gooijer CD, den Boer MM, Vlak JM, Tramper J (1996) Long-term semi-continuous production of recombinant baculovirus protein in a repeated (fed-)batch two-stage reactor system. Enzyme Microb Technol 18:460–466

    Article  Google Scholar 

  • Vaughn JL, Fan F (1997) Differential requirements of two insect cell lines for growth in serum-free medium. In Vitro Cell Dev Biol 33:479–482

    CAS  Google Scholar 

  • Vernet T, Tessier DC, Richardson C, Laliberte F, Khouri HE, Bell AW, Storer AC, Thomas DY (1990) Secretion of functional papain precursor from insect cells: requirement for N-glycosylation of the pro-region. J Biol Chem 265:16661–16666

    CAS  PubMed  Google Scholar 

  • Vlak JM, Gooijer CD de, Tramper J, Miltenburger HG (1996) Insect cell cultures: fundamental and applied aspects. Kluwer Academic, Dordrecht

    Google Scholar 

  • Wang M-Y, Bentley WE (1994) Continuous insect cell (Sf9) culture with aeration through sparging. Appl Microbiol Biotechnol 41:317–323

    Article  CAS  PubMed  Google Scholar 

  • Wang M-Y, Doong S-R (2000) A pH-based fed-batch process for the production of a chimeric recombinant infectious bursal disease virus (IBDV) structural protein (rVP2H) in insect cells. Process Biochem 35:877–884

    Article  CAS  PubMed  Google Scholar 

  • Wang M-Y, Kwong S, Bentley WE (1993a) Effects of oxygen/glucose/glutamine feeding on insect cell baculovirus protein expression: a study on epoxide hydrolase production. Biotechnol Prog 9:355–361

    CAS  PubMed  Google Scholar 

  • Wang M-Y, Vakharia V, Bentley WE (1993b) Expression of epoxide hydrolase in insect cells: a focus on the infected cell. Biotechnol Bioeng 42:240–246

    CAS  Google Scholar 

  • Wang M-Y, Pulliam TR, Valle M, Vakharia VN, Bentley WE (1996) Kinetic analysis of alkaline protease activity, recombinant protein production and metabolites for infected insect (Sf9) cells under different DO levels. J Biotechnol 46:243–254

    Article  CAS  Google Scholar 

  • Wang M-Y, Yang YH, Lee HS, Lai SY (2000) Production of functional hepatocyte growth factor (HGF) in insect cells infected with an HGF-recombinant baculovirus in a serum-free medium. Biotechnol Prog 16:146–151

    Google Scholar 

  • Warren CE (1993) Glycosylation. Curr Opin Biotechnol 4:596–602

    CAS  PubMed  Google Scholar 

  • Weber W, Weber E, Geisse S, Memmert K (2001) Catching the Wave: the BEVS and the Biowave. In: Lindner-Olsson E, Chatzissavidou N, Lüllau E (eds) Animal cell technology: from target to market. Kluwer Academic, Dordrecht, pp 335–337

    Google Scholar 

  • Weiss SA, Smith GC, Kalter SS, Vaughn JL (1981) Improved method for the production of insect cell cultures in large volume. In Vitro 17:495–502

    CAS  Google Scholar 

  • Weiss S, Grefrath P, Whitford W, Pfohl J, Fike R, Jayme D (1990) Growth of insect cells in a serum-free medium and production of recombinant proteins using various bioreactors. In Vitro Cell Dev Biol 26:30A

    Google Scholar 

  • Wilkie GEI, Stockdale H, Pirt SV (1980) Chemically-defined media for production of insect cells and viruses in vitro. Dev Biol Stand 46:29–37

    CAS  PubMed  Google Scholar 

  • Wittwer D, Wiesner A (1998) Insect cell stimulation by LPS requires the activity of cell-released proteases. Arch Insect Biochem Physiol 39:91–97

    Article  CAS  PubMed  Google Scholar 

  • Wong TKK, Nielsen LK, Greenfield PF, Reid S (1994) Relationship between oxygen uptake rate and time of infection of Sf9 insect cells infected with a recombinant baculovirus. Cytotechnology 15:157–167

    CAS  PubMed  Google Scholar 

  • Wyatt GR, Loughheed TC, Wyatt SS (1956) The chemistry of insect hemolymph. J Gen Physiol 39:853–868

    CAS  Google Scholar 

  • Xie L, Wang DIC (1994) Stoichiometric analysis of animal cell growth and its application in medium design. Biotechnol Bioeng 43:1164–1174

    Google Scholar 

  • Yamada K, Nakajima Y, Natori S (1990) Production of recombinant sarcotoxin IA in Bombyx mori cells. Biochem J 272:633–636

    CAS  PubMed  Google Scholar 

  • Yang J-D, Gecik P, Collins A, Czarnecki S, Hsu H-H, Lasdun A, Sundaram R, Muthukumar G, Silberklang M (1996) Rational scale-up of a baculovirus-insect batch process based on medium nutritional depth. Biotechnol Bioeng 52:696–706

    Article  CAS  Google Scholar 

  • Yang JD, Angelillo Y, Chaudhry M, Goldenberg C, Goldenberg DM (2000) Achievement of high cell density and high antibody productivity by a controlled-fed perfusion bioreactor process. Biotechnol Bioeng 69:74–82

    Article  CAS  PubMed  Google Scholar 

  • Zhang FM, Saarinen MA, Itle LJ, Lang SC, Murhammer DW, Linhardt RJ (2002) The effect of dissolved oxygen (DO) concentration on the glycosylation of recombinant protein produced by the insect cell-baculovirus expression system. Biotechnol Bioeng 77:219–224

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kalogerakis N, Behie LA (1994) Optimization of the physiochemical parameters for the culture of Bombyx mori insect cells used in recombinant protein expression. J Biotechnol 33:249–258

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Handa-Corrigan A, Spier RE (1993) A comparison of oxygenation methods for high-density perfusion cultures of animal cells. Biotechnol Bioeng 41:685–692

    CAS  Google Scholar 

Download references

Acknowledgements

The support of a fellowship from FDS (Scientific Development Fund, Université Catholique de Louvain, Belgium) to L. Ikonomou is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Agathos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikonomou, L., Schneider, YJ. & Agathos, S.N. Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol 62, 1–20 (2003). https://doi.org/10.1007/s00253-003-1223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1223-9

Keywords

Navigation