Skip to main content
Log in

Different Interspecies Electron Transfer Patterns during Mesophilic and Thermophilic Syntrophic Propionate Degradation in Chemostats

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Propionate is one of the major intermediates in anaerobic digestion of organic waste to CO2 and CH4. In methanogenic environments, propionate is degraded through a mutualistic interaction between symbiotic propionate oxidizers and methanogens. Although temperature heavily influences the microbial ecology and performance of methanogenic processes, its effect on syntrophic interaction during propionate degradation remains poorly understood. In this study, metagenomics and metatranscriptomics were employed to compare mesophilic and thermophilic propionate degradation communities. Mesophilic propionate degradation involved multiple syntrophic organisms (Syntrophobacter, Smithella, and Syntrophomonas), pathways, interactions, and preference toward formate-based electron transfer to methanogenic partners (i.e., Methanoculleus). In thermophilic propionate degradation, one syntrophic organism predominated (Pelotomaculum), interspecies H2 transfer played a major role, and phylogenetically and metabolically diverse H2-oxidizing methanogens were present (i.e., Methanoculleus, Methanothermobacter, and Methanomassiliicoccus). This study showed that microbial interactions, metabolic pathways, and niche diversity are distinct between mesophilic and thermophilic microbial communities responsible for syntrophic propionate degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koch M, Dolfing J, Wuhrmann K, Zehnder AJB (1983) Pathways of propionate degradation by enriched methanogenic cultures. Appl Environ Microbiol 45:1411–1414. https://doi.org/10.1016/0005-2728(84)90100-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schink B, Stams AJM (2002) Syntrophism among prokaryotes. In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community3rd edn. Springer, Berlin

    Google Scholar 

  3. de Bok FA, Stams AJ, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67:1800–1804. https://doi.org/10.1128/AEM.67.4.1800-1804.2001

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Bok FA, Plugge CM, Stams AJ (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38:1368–1375. https://doi.org/10.1016/j.watres.2003.11.028

    Article  CAS  PubMed  Google Scholar 

  5. de Bok FA, Harmsen HJ, Plugge CM, de Vries MC, Akkermans AD, de Vos WM et al (2005) The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int J Syst Evol Microbiol 55:1697–1703. https://doi.org/10.1099/ijs.0.02880-0

    Article  CAS  PubMed  Google Scholar 

  6. Hidalgo-Ahumada CA, Nobu MK, Narihiro T, Tamaki H, Liu WT, Kamagata Y et al (2018) Novel energy conservation strategies and behaviour of Pelotomaculum schinkii driving syntrophic propionate catabolism. Environ Microbiol 20:4503–4511. https://doi.org/10.1111/1462-2920.14388

    Article  CAS  PubMed  Google Scholar 

  7. Embree M, Liu JK, Al-Bassam MM, Zengler K (2015) Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc Natl Acad Sci U S A 112:15450–15455. https://doi.org/10.1073/pnas.1506034112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harmsen HJ, Wullings B, Akkermans AD, Ludwig W, Stams AJ (1993) Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch Microbiol 160:238–240. https://doi.org/10.1007/BF00249130

    Article  CAS  PubMed  Google Scholar 

  9. Wallrabenstein C, Hauschild E, Schink B (1995) Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352. https://doi.org/10.1007/s002030050273

    Article  CAS  Google Scholar 

  10. Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans ADL, De Vos WM, Stams AJM (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1387. https://doi.org/10.1099/00207713-48-4-1383

    Article  CAS  PubMed  Google Scholar 

  11. Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577. https://doi.org/10.1038/nrmicro2166

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. Nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556. https://doi.org/10.1099/00207713-49-2-545

    Article  CAS  PubMed  Google Scholar 

  13. Sieber JR, Mcinerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452. https://doi.org/10.1146/annurev-micro-090110-102844

    Article  CAS  PubMed  Google Scholar 

  14. Narihiro T (2016) Microbes in the water infrastructure: underpinning our society. Microbes Environ 31:89–92. https://doi.org/10.1264/jsme2.ME3102rh

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shen L, Zhao Q, Wu X, Li X, Li Q, Wang Y (2016) Interspecies electron transfer in syntrophic methanogenic consortia: from cultures to bioreactors. Renew Sust Energ Rev 54:1358–1367. https://doi.org/10.1016/j.rser.2015.10.102

    Article  CAS  Google Scholar 

  16. Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP et al (2014) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605. https://doi.org/10.1128/AEM.00895-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kosaka T, Kato S, Shimoyama T, Ishii S, Abe T, Watanabe K (2008) The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res 18:442–448. https://doi.org/10.1101/gr.7136508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL et al (2010) The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environ Microbiol 12:2289–2301. https://doi.org/10.1111/j.1462-2920.2010.02237.x

    Article  CAS  PubMed  Google Scholar 

  19. Plugge CM, Henstra AM, Worm P, Swarts DC, Paulitsch-Fuchs AH, Scholten JC et al (2012) Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOBT). Stand Genomic Sci 7:91–106. https://doi.org/10.4056/sigs.2996379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nobu MK, Narihiro T, Rinke C, Kamagata Y, Tringe SG, Woyke T et al (2015a) Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J 9:1710–1722. https://doi.org/10.1038/ismej.2014.256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nobu MK, Narihiro T, Hideyuki T, Qiu YL, Sekiguchi Y, Woyke T et al (2015b) The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron flow. Environ Microbiol 17:4861–4872. https://doi.org/10.1111/1462-2920.12444

    Article  CAS  PubMed  Google Scholar 

  22. Nobu MK, Narihiro T, Kuroda K, Mei R, Liu WT (2016) Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J 10:2478–2487. https://doi.org/10.1038/ismej.2016.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ishii S, Kosaka T, Hori K, Hotta Y, Watanabe K (2005) Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl Environ Microbiol 71:7838–7845. https://doi.org/10.1128/AEM.71.12.7838-7845.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Westermann P, Ahring BK, Mah RA (1989) Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl Environ Microbiol 55:1262–1266. https://doi.org/10.1016/0167-7799(89)90027-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thauer R, Kaster A, Seedorf HW, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. https://doi.org/10.1038/nrmicro1931

    Article  CAS  PubMed  Google Scholar 

  26. Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A et al (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491. https://doi.org/10.1038/nature13164

    Article  CAS  PubMed  Google Scholar 

  27. Tang YQ, Matsui T, Morimura S, Wu XL, Kida K (2008) Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation. J Biosci Bioeng 106:180–187. https://doi.org/10.1263/jbb.106.180

    Article  CAS  PubMed  Google Scholar 

  28. Gan Y, Qiu Q, Liu P, Rui J, Lu Y (2012) Syntrophic oxidation of propionate in rice field soil at 15 and 30 °C under methanogenic conditions. Appl Environ Microbiol 78:4923–4932. https://doi.org/10.1128/AEM.00688-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Conrad R, Klose M, Noll M (2009) Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environ Microbiol 11:1844–1853. https://doi.org/10.1111/j.1462-2920.2009.01909.x

    Article  CAS  PubMed  Google Scholar 

  30. Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741. https://doi.org/10.1088/0032-1028/16/10/002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fey A, Chin KJ, Conrad R (2001) Thermophilic methanogens in rice field soil. Environ Microbiol 3:295–303. https://doi.org/10.1046/j.1462-2920.2001.00195.x

    Article  CAS  PubMed  Google Scholar 

  32. Fey A, Claus P, Conrad R (2004) Temporal change of 13C isotope signatures and methanogenic pathways in rice field soil incubated anoxically at different temperatures. Geochim Cosmochim Acta 68:293–306. https://doi.org/10.1016/S0016-7037(03)00426-5

    Article  CAS  Google Scholar 

  33. Noll M, Klose M, Conrad R (2010) Effect of temperature change on the composition of the bacterial and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic rice field soil. FEMS Microbiol Ecol 73:215–225. https://doi.org/10.1111/j.1574-6941.2010.00883.x

    Article  CAS  PubMed  Google Scholar 

  34. Hua ZS, Han YJ, Chen LX, Liu J, Hu M, Li SJ et al (2015) Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. ISME J 9:1280–1294. https://doi.org/10.1038/ismej.2014.212

    Article  CAS  PubMed  Google Scholar 

  35. Nobu MK, Narihiro T, Liu M, Kuroda K, Mei R, Liu WT (2017) Thermodynamically diverse syntrophic aromatic compound catabolism. Environ Microbiol 19:4576–4586. https://doi.org/10.1111/1462-2920.13922

    Article  CAS  PubMed  Google Scholar 

  36. Shigematsu T, Tang Y, Kawaguchi H, Ninomiya K, Kijima J, Kobayashi T, Morimura S, Kida K (2003) Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J Biosci Bioeng 96:547–558. https://doi.org/10.1016/s1389-1723(04)70148-6

    Article  CAS  PubMed  Google Scholar 

  37. Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491. https://doi.org/10.1128/AEM.66.12.5488-5491.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu YW, Simmons BA, Singer SW (2016) MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607. https://doi.org/10.1093/bioinformatics/btv638

    Article  CAS  PubMed  Google Scholar 

  41. Wu YW, Tang YH, Tringe SG, Simmons BA, Singer SW (2014) MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2:26. https://doi.org/10.1186/2049-2618-2-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kang DD, Froula J, Egan R, Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. Peerj 3:e1165. https://doi.org/10.7717/peerj.1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  45. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1093/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Langmead B, Wilks C, Antonescu V, Charles R (2018) Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 35:421–432. https://doi.org/10.1093/bioinformatics/bty648

    Article  CAS  PubMed Central  Google Scholar 

  47. Labatut RA, Angenent LT, Scott NR (2014) Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability? Water Res 53:249–258. https://doi.org/10.1016/j.watres.2014.01.035

    Article  CAS  PubMed  Google Scholar 

  48. Speece RE, Boonyakitsombut S, Kim M, Azbar N, Ursillo P (2006) Overview of anaerobic treatment: thermophilic and propionate implications. Water Environ Res 78:460–473. https://doi.org/10.2175/106143006X95492

    Article  CAS  PubMed  Google Scholar 

  49. Wilson CA, Murthy SM, Fang Y, Novak JT (2008) The effect of temperature on the performance and stability of thermophilic anaerobic digestion. Water Sci Technol 57:297–304. https://doi.org/10.2166/wst.2008.027

    Article  CAS  PubMed  Google Scholar 

  50. Schmidt JE, Ahring BK (1993) Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol 59:2546–2551. https://doi.org/10.1002/bit.260420422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF (2011) EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol 12:R44. https://doi.org/10.1186/gb-2011-12-5-r44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H (2002) Pelotomaculum thermopropionicum gen. Nov., sp nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735. https://doi.org/10.1099/ijs.0.02212-0

    Article  CAS  PubMed  Google Scholar 

  53. Suryawanshi PC, Chaudhari AB, Kothari RM (2010) Thermophilic anaerobic digestion: the best option for waste treatment. Crit Rev Biotechnol 30:31–40. https://doi.org/10.3109/07388550903330505

    Article  CAS  PubMed  Google Scholar 

  54. Schnürer A, Zellner G, Svensson BH (1999) Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol Ecol 29:249–261. https://doi.org/10.1016/S0168-6496(99)00016-1

    Article  Google Scholar 

  55. Dolfing J, Larter SR, Head IM (2008) Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2:442–452. https://doi.org/10.1038/ismej.2007.111

    Article  CAS  PubMed  Google Scholar 

  56. Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907. https://doi.org/10.1099/ijs.0.033712-0

    Article  CAS  PubMed  Google Scholar 

  57. Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta 1827:94–113. https://doi.org/10.1016/j.bbabio.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  58. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501. https://doi.org/10.1111/j.1574-6976.2001.tb00587.x

    Article  CAS  PubMed  Google Scholar 

  59. Biegel E, Schmidt S, González JM, Müller V (2011) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 68:613–634. https://doi.org/10.1007/s00018-010-0555-8

    Article  CAS  PubMed  Google Scholar 

  60. Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A (2015) New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl Environ Microbiol 81:1338–1352. https://doi.org/10.1128/AEM.03389-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Welte C, Deppenmeier U (2014) Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta 1837:1130–1147. https://doi.org/10.1016/j.bbabio.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  62. Gargi K, Kridelbaugh DM, Guss AM, Metcalf WW (2009) Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri. Proc Natl Acad Sci U S A 106:15915–15920. https://doi.org/10.1073/pnas.0905914106

    Article  Google Scholar 

  63. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Technology of China (2016YFE0127700), the National Natural Science Foundation of China (51678378 and 41701295), the China Postdoctoral Science Foundation (2018 M643480), and the Fundamental Research Funds for the Central University (2018SCUH0023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takashi Narihiro, Masaru Konishi Nobu or Yue-Qin Tang.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 437 kb)

ESM 2

(XLSX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YT., Zeng, Y., Wang, HZ. et al. Different Interspecies Electron Transfer Patterns during Mesophilic and Thermophilic Syntrophic Propionate Degradation in Chemostats. Microb Ecol 80, 120–132 (2020). https://doi.org/10.1007/s00248-020-01485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01485-x

Keywords

Navigation