Skip to main content
Log in

Independent Origins of Vectored Plant Pathogenic Bacteria from Arthropod-Associated Arsenophonus Endosymbionts

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The genus Arsenophonus (Gammaproteobacteria) is comprised of intracellular symbiotic bacteria that are widespread across the arthropods. These bacteria can significantly influence the ecology and life history of their hosts. For instance, Arsenophonus nasoniae causes an excess of females in the progeny of parasitoid wasps by selectively killing the male embryos. Other Arsenophonus bacteria have been suspected to protect insect hosts from parasitoid wasps or to expand the host plant range of phytophagous sap-sucking insects. In addition, a few reports have also documented some Arsenophonus bacteria as plant pathogens. The adaptation to a plant pathogenic lifestyle seems to be promoted by the infection of sap-sucking insects in the family Cixiidae, which then transmit these bacteria to plants during the feeding process. In this study, we define the specific localization of an Arsenophonus bacterium pathogenic to sugar beet and strawberry plants within the plant hosts and the insect vector, Pentastiridius leporinus (Hemiptera: Cixiidae), using fluorescence in situ hybridization assays. Phylogenetic analysis on 16S rRNA and nucleotide coding sequences, using both maximum likelihood and Bayesian criteria, revealed that this bacterium is not a sister taxon to “Candidatus Phlomobacter fragariae,” a previously characterized Arsenophonus bacterium pathogenic to strawberry plants in France and Japan. Ancestral state reconstruction analysis indicated that the adaptation to a plant pathogenic lifestyle likely evolved from an arthropod-associated lifestyle and showed that within the genus Arsenophonus, the plant pathogenic lifestyle arose independently at least twice. We also propose a novel Candidatus status, “Candidatus Arsenophonus phytopathogenicus” novel species, for the bacterium associated with sugar beet and strawberry diseases and transmitted by the planthopper P. leporinus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alison PG (2003) Epidemiology meets evolutionary ecology. Trends Ecol Evol 18:132–139

    Article  Google Scholar 

  2. Arneodo JD, Bressan A, Lherminier J, Michel J, Boudon-Padieu E (2008) Ultrastructural detection of an unusual intranuclear bacterium in Pentastiridius leporinus (Hemiptera: Cixiidae). J Inver Pathol 97:310–313

    Article  CAS  Google Scholar 

  3. Bai X, Zhang J, Ewing A, Miller SA, Jancso Radek A, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA (2006) Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188:3682–3696

    Article  PubMed  CAS  Google Scholar 

  4. Bové JM, Garnier M (2002) Phloem-and xylem-restricted plant pathogenic bacteria. Plant Science 163:1083–1098

    Article  Google Scholar 

  5. Bressan A, Sémétey O, Nusillard B, Clair D, Boudon-Padieu E (2008) Insect vectors (Hemiptera: Cixiidae) and pathogen types associated with syndrome “basses richesses” disease of sugar beet in France. Plant Disease 92:113–119

    Article  CAS  Google Scholar 

  6. Bressan A, Arneodo JD, Simonato M, Haines WP, Boudon-Padieu E (2009) Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Environ Microbiol 11:3265–3279

    Article  PubMed  CAS  Google Scholar 

  7. Bressan A, Sémétey O, Arneodo J, Lherminier J, Boudon-Padieu E (2009) Vector transmission of a plant pathogenic bacterium in the Arsenophonus clade sharing ecological traits with facultative insect endosymbionts. Phytopathology 99:1289–1296

    Article  PubMed  CAS  Google Scholar 

  8. Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M (2007) Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull Entomol Res 97:407–413

    Article  PubMed  CAS  Google Scholar 

  9. Dale C, Beeton M, Harbison C, Jones T, Pontes M (2006) Isolation, pure culture, and characterization of “Candidatus Arsenophonus arthropodicus,” an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis. Appl Env Microbiol 72:2997–3004

    Article  CAS  Google Scholar 

  10. Danet J-L, Foissac X, Zreik L, Salar P, Verdin E, Nourrisseau JG, Garnier M (2003) “Candidatus Phlomobacter fragariae” is the prevalent agent of marginal chlorosis of strawberry in French production fields and is transmitted by the planthopper Cixius wagneri (China). Phytopathology 93:644–649

    Article  PubMed  Google Scholar 

  11. Darby AC, Choi JH, Wilkes T, Hughes MA, Werren JH, Hurst GDD, Colbourne JK (2010) Characteristics of the genome of Arsenophonus nasoniae, son-killer bacterium of the wasp Nasonia. Insect Mol Biol 19:75–89

    Article  PubMed  CAS  Google Scholar 

  12. Davis MJ, Ying Z, Brunner BR, Pantoja A, Ferwerda FH (1998) Rickettsial relative associated with papaya bunchy top disease. Curr Microbiol 36:80–84

    Article  PubMed  CAS  Google Scholar 

  13. Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstadter J (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:27

    Article  PubMed  Google Scholar 

  14. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  15. Erickson DL, Waterfield NR, Vadyvaloo V, Long D, Fischer ER, French-Constant R, Hinnebusch BJ (2007) Acute oral toxicity of Yersinia pseudotuberculosis to fleas: implications for the evolution of vector-borne transmission of plague. Cellular Microbiol 9:2658–2666

    Article  CAS  Google Scholar 

  16. Fukatsu T, Watanabe K, Sekiguchi J (1998) Specific detection of intracellular symbiotic bacteria of aphids by oligonucleotide-probed in situ hybridization. Appl Entomol Zool 33:461–472

    Google Scholar 

  17. Gatineau F, Jacob N, Vautrin S, Larrue J, Lherminier J, Richard-Molard M, Boudon-Padieu E (2002) Association with the syndrome “basses richesses” of sugar beet of a phytoplasma and a bacterium-like organism transmitted by a Pentastiridius sp. Phytopathology 92:384–392

    Article  PubMed  CAS  Google Scholar 

  18. Gherna RL, Werren JH, Weisburg W, Cote R, Woese CR, Mandelco L, Brenner R (1991) Arsenophonus nasoniae, genus novel, species novel, causative agent of son killer trait in the parasitic wasp, Nasonia vitripennis. Int J Syst Bacteriol 41:563–565

    Article  Google Scholar 

  19. Gotoh T, Noda H, Ito S (2007) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98:13–20

    Article  PubMed  CAS  Google Scholar 

  20. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. System Biol 52:696–704

    Article  Google Scholar 

  21. Hansen AK, Jeong G, Paine TD, Stouthamer R (2007) Frequency of secondary symbiont infection in an invasive psyllid relates to parasitism pressure on a geographic scale in California. Appl Environ Microbiol 73:7531–7535

    Article  PubMed  CAS  Google Scholar 

  22. Hansen AK, Trumble JT, Stouthamer R, Paine TD (2008) A new Huanglongbing species, “Candidatus Liberibacter psyllaurous”, found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Appl Environ Microbiol 74:5862–290

    Article  PubMed  CAS  Google Scholar 

  23. Hogenhout SA, Ammar E-D, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Ann Rev Phytopathol 46:327–359

    Article  CAS  Google Scholar 

  24. Hoshia A, Oshimaa K, Kakizawaa S, Ishiia Y, Ozekia J, Hashimotoa M, Komatsua K, Kagiwadab S, Yamajia Y, Nambaa S (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. PNAS 2:6416–6421

    Article  Google Scholar 

  25. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  26. Hypsa V, Dale C (1997) In vitro culture and phylogenetic analysis of “Candidatus Arsenophonus triatominarum”, an intracellular bacterium from the triatomine bug, Triatoma infestans. Int J Syst Bacteriol 47:1140–1144

    Article  PubMed  CAS  Google Scholar 

  27. IRPCM (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, nonhelical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255

    Article  Google Scholar 

  28. Lambrechts L, Scott TW (2009) Mode of transmission and the evolution of Arbovirus virulence in mosquito vectors. Proc R Soc B 276:1369–1378

    Article  PubMed  Google Scholar 

  29. Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis. Version 2.73 (http://mesquiteproject.org) November 16, 2010

  30. Montllor C, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195

    Article  Google Scholar 

  31. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  PubMed  CAS  Google Scholar 

  32. Murray RGE, Schleifer KH (1994) Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 44:174–176

    Article  PubMed  CAS  Google Scholar 

  33. Nishigawa H, Oshima K, Kakizawa S, Jung H-Y, Kuboyama T, Miyata S, Ugaki M, Namba S (2002) A plasmid from a non-insect-transmissible line of a phytoplasma lacks two open reading frames that exist in the plasmid from the wild-type line. Gene 298:195–201

    Article  PubMed  CAS  Google Scholar 

  34. Nourrisseau JG, Lansac M, Garnier M (1993) Marginal chlorosis, a new disease of strawberries associated with a bacterium like organism. Plant Dis 77:1055–1059

    Article  Google Scholar 

  35. Novakova E, Hypsa V, Moran NA (2009) Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9:143

    Article  PubMed  Google Scholar 

  36. Oshima K, Kakizawa S, Nishigawa H, Jung HY, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M, Namba S (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genet 36:27–29

    Article  PubMed  CAS  Google Scholar 

  37. Pagel M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48:612–622

    Article  Google Scholar 

  38. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  39. Purcell AH (1982) Evolution of the insect vector relationship. In: Lacy GH, Mount MS (eds) Phytopathogenic prokaryotes. Academic Press, New York, pp 121–156

    Google Scholar 

  40. Regassa LB, Gasparich GE (2006) Spiroplasmas: evolutionary relationships and biodiversity. Front Biosci 11:2983–3002

    Article  PubMed  CAS  Google Scholar 

  41. Salar P, Sémétey O, Danet JL, Boudon-Padieu E, Foissac X (2010) ‘Candidatus Phlomobacter fragariae’ and the proteobacterium associated with the low sugar content syndrome of sugar beet are related to bacteria of the Arsenophonus clade detected in hemipteran insects. Europ J Plant Pathol 126:123–127

    Article  Google Scholar 

  42. Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbionts. Science 310:1781

    Article  PubMed  CAS  Google Scholar 

  43. Sémétey O, Bressan A, Gatineau F, Boudon-Padieu E (2007) Development with RISA of a specific assay for detection of the bacterial agent of syndrome “basses richesses” of sugar beet. Confirmation of Pentastiridius sp. (Fulgoromopha, Cixiidae) as the economic vector. Plant Pathol 56:797–804

    Article  Google Scholar 

  44. Sémétey O, Bressan A, Richard-Molard M, Boudon-Padieu E (2007) Monitoring of proteobacteria and phytoplasma in sugar beet naturally or experimentally affected by the disease syndrome ‘basses richesses’. Europ J Plant Pathol 117:187–196

    Article  Google Scholar 

  45. Sémétey O, Gatineau F, Bressan A, Boudon-Padieu E (2007) Characterization of a γ-3 Proteobacteria responsible for the syndrome “basses richesses” of sugar beet transmitted by Pentastiridius sp. (Hemiptera: Cixiidae). Phytopathology 97:72–78

    Article  PubMed  Google Scholar 

  46. Stavrinides J (2009) Origin and evolution of phytopathogenic bacteria. In: Jackson RW (ed) Plant pathogenic bacteria: genomics and molecular biology. Caister Academic Press, Norfolk, p 330

    Google Scholar 

  47. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  48. Tanaka M, Nao M, Usugi T (2006) Occurrence of strawberry marginal chlorosis caused by “Candidatus Phlomobacter fragariae” in Japan. J Gen Plant Pathol 72:374–377

    Article  CAS  Google Scholar 

  49. Terlizzi F, Babini AR, Credi R (2006) First report of stolbur phytoplasma (16SrXII-A) on strawberry in northern Italy. Plant Dis 90:831

    Article  Google Scholar 

  50. Terlizzi F, Babini AR, Lanzoni C, Pisi A, Credi R, Foissac X, Salar P (2007) First report of a γ-3 proteobacterium associated with diseased strawberries in Italy. Plant Dis 91:1688

    Article  Google Scholar 

  51. Thao ML, Baumann P (2004) Evidence for multiple acquisitions of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr Microbiol 48:140–144

    Article  PubMed  CAS  Google Scholar 

  52. Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM (2009) Evolution and diversity of Rickettsia bacteria. BMC Biol 7:6

    Article  PubMed  Google Scholar 

  53. Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111

    Article  PubMed  CAS  Google Scholar 

  54. Werren JH, Skinner SW, Huger AM (1986) Male-killing bacteria in a parasitic wasp. Science 231:990–992

    Article  PubMed  CAS  Google Scholar 

  55. Zreik L, Bové JM, Garnier M (1998) Phylogenetic characterization of the bacterium-like organism associated with marginal chlorosis of strawberry and proposition of a Candidatus taxon for the organism, ‘Candidatus Phlomobacter fragariae’. Int J Syst Bacteriol 48:257–261

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to four anonymous reviewers for suggestions on the original version of the manuscript and to Elisabeth Boudon-Padieu at INRA Dijon for providing P. leporinus planthoppers and sugar beet plants used for the FISH assays. Research was supported by the University of Hawaii Start-up and Hatch funds to Alberto Bressan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bressan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

Results of fluorescence in situ hybridization assays on a thin section of Pentastiridius leporinus abdomen hybridized with both universal eubacterial probe, EUB338-Alexa Fluor488 (a) and SBR proteobacterium probe, SBR450-Texas Red (b). B 1 a bacteriome containing “Ca. Sulcia muelleri”-like cells, B 2 a bacteriome containing “Ca. Purcelliella pentastirinorum”-like cells and other large cells from an underscribed β-proteobacterium (***); Oo oocyte. Arrows indicate localization of SBR proteobacterium. Scale bars = 50 μm. (PDF 8457 kb)

Figure S2

Cladogram showing ancestral state reconstruction using parsimony analysis mapped onto 16S rRNA tree (PDF 642 kb)

Figure S3

Cladogram showing ancestral state reconstruction using parsimony analysis mapped onto spoT-spoU-recG tree. (PDF 603 kb)

Table S1

(DOC 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressan, A., Terlizzi, F. & Credi, R. Independent Origins of Vectored Plant Pathogenic Bacteria from Arthropod-Associated Arsenophonus Endosymbionts. Microb Ecol 63, 628–638 (2012). https://doi.org/10.1007/s00248-011-9933-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9933-5

Keywords

Navigation