Skip to main content
Log in

The Relative Ages of Eukaryotes and Akaryotes

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The Last Eukaryote Common Ancestor (LECA) appears to have the genetics required for meiosis, mitosis, nucleus and nuclear substructures, an exon/intron gene structure, spliceosomes, many centres of DNA replication, etc. (and including mitochondria). Most of these features are not generally explained by models for the origin of the Eukaryotic cell based on the fusion of an Archeon and a Bacterium. We find that the term ‘prokaryote’ is ambiguous and the non-phylogenetic term akaryote should be used in its place because we do not yet know the direction of evolution between eukaryotes and akaryotes. We use the term ‘protoeukaryote’ for the hypothetical stem group ancestral eukaryote that took up a bacterium as an endosymbiont that formed the mitochondrion. It is easier to make detailed models with a eukaryote to an akaryote transition, rather than vice versa. So we really are at a phylogenetic impasse in not being confident about the direction of change between eukaryotes and akaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Attwater J, Wochner A, Holliger P (2013) In-ice evolution of RNA polymerase ribozyme activity. Nat Chem 5:1011–1018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blake CCF (1983) Exons—present from the beginning? Nature 306:535–537

    Article  CAS  PubMed  Google Scholar 

  • Bolcun-Filas E, Rinaldi VD, White ME, Schimenti JC (2014) Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway. Science 343:533–536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boussau B, Blanquart S, Necsulea A, Lartillot N, Gouy M (2008) Parallel adaptations to high temperatures in the Archaean eon. Nature 456:942–945

    Article  CAS  PubMed  Google Scholar 

  • Bracht JR, Perlman DH, landweber LF (2012) Cytosine methylation and hydroxymethylation mark DNA for elimination in Oxytricha trifallax. Genome Biol 13:R99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brawerman G (1974) Eukaryotic messenger RNA. Annu Rev Biochem 43:621–642

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann H, Philippe H (1999) Archaea sister group of bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol Biol Evol 16:817–825

    Article  CAS  PubMed  Google Scholar 

  • Caetano-Anollés G (2002) Evolved RNA secondary structure and the rooting of the universal tree of life. J Mol Evol 54:333–345

    Article  PubMed  CAS  Google Scholar 

  • Carlile M (1982) Prokaryotes and eukaryotes: strategies and successes. Trends Bioch Sci 7:128–130

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (2010) Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Dir 5:7

    Article  CAS  Google Scholar 

  • Chatton E (1925) Pansporella perplexa: amœbien à spores protégées parasite des daphnies: réflexions sur la biologie et la phylogénie des protozoaires. Masson, Paris

    Google Scholar 

  • Collins LJ, Penny D (2005) Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 22:1053–1066

    Article  CAS  PubMed  Google Scholar 

  • Collins LJ, Kurland CG, Biggs P, Penny D (2009) The modern RNP world of eukaryotes. J Hered 100:597–604

    Article  CAS  PubMed  Google Scholar 

  • Collins LJ, Chen XS, Schonfeld B (2010) The epigenetics of non-coding RNA. In: Tollefsbol T (ed) Handbook of epigenetics. Academic Press, Oxford, pp 49–61

    Google Scholar 

  • Crest J, Oxnard N, Ji J-Y, Schubiger G (2007) Onset of the DNA replication checkpoint in the early drosophila embryo. Genetics 175:567–584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daly TK, Sutherland-Smith AJ, Penny D (2013) In silico resurrection of the Major Vault Protein suggests it is ancestral in modern eukaryotes. Gen Biol Evol 5:1567–1583

    Article  CAS  Google Scholar 

  • de Duve C (2007) The origin of eukaryotes: a reappraisal. Nat Rev Gen 8:395–403

    Article  CAS  Google Scholar 

  • de Nooijer S, Holland B, Penny D (2009) Eukaryote origins: there was no Garden of Eden? PLoS ONE 4:e5507

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • del Campo J, Sieracki ME, Molestina R, Keeling P, Massana R, Ruiz-Trillo I (2014) The others: our biased perspective of eukaryotic genomes. Trends Ecol Evol 29:252–259

    Article  PubMed Central  PubMed  Google Scholar 

  • Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S (2011) On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol 162:53–70

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2011) The last universal common ancestor (LUCA) and the ancestors of Archaea and Bacteria were progenote. J Mol Evol 72:119–126

    Article  PubMed  CAS  Google Scholar 

  • Diekmann Y, Pereira-Leal JB (2013) Evolution of intracellular compartmentalization. Biochem J 449:319–331

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF (2014) The trouble with (group II) introns. Proc Natl Acad Sci USA 111:6536–6537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drinnenberg IA, Fink GR, Bartel DP (2011) Compatibility with killer explains the rise of RNAi-deficient fungi. Science 333:1592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Egel R, Penny D (2007) On the origin of meiosis in eukaryotic evolution: coevolution of meiosis and mitosis from feeble beginnings. In: Egel R, Lankenau D-H (eds) Recombination and meiosis: models, means and evolution. Springer, Berlin, pp 249–288

    Google Scholar 

  • Eigen M, Schuster P (1978) Part A: Emergence of the hypercycle. Naturwissenschaften 65:7–41

    Article  Google Scholar 

  • El Albani A et al (2014) The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity. PLoS ONE 9:e99438

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    Article  CAS  PubMed  Google Scholar 

  • Epp C, Li F, Howitt CA, Chookajorn T, Deitsch KW (2009) Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum. RNA 15:116–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fica SM, Tuttle N, Novak T et al (2013) RNA catalyses nuclear pre-mRNA splicing. Nature 503:229–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisk JC, Read LK (2011) Protein arginine methylation in parasitic protozoa. Eukaryot Cell 10:1013–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flot JF et al (2013) Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500:453–457

    Article  CAS  PubMed  Google Scholar 

  • Forsdyke DR (2013) Introns first. Biol Theory. doi:10.10007/s13752-013-0090-6

    Google Scholar 

  • Forterre P (1995) Thermoreduction, a hypothesis for the origin of prokaryotes. C R Acad Sci Paris 318:415–422

    CAS  PubMed  Google Scholar 

  • Forterre P (2006) Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of the cellular domain. Proc Natl Acad Sci USA 103:3669–3674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forterre P (2011) A new fusion hypothesis for the origin of Eukarya: better than previous ones, but probably also wrong. Res Microbiol 162:77–91

    Article  CAS  PubMed  Google Scholar 

  • Forterre P (2013) The common ancestor of Archaea and Eukarya was not an Archaeon. Archaea UNSP 372396. doi:10.1155/2013/372396

    Google Scholar 

  • Forterre P, Philippe H (1999) Where is the root of the universal tree of life? BioEssays 21:871–879

    Article  CAS  PubMed  Google Scholar 

  • Fossum S, Crooke E, Skarstad K (2007) Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli. EMBO J 26:4514–4522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuerst J (2013) The PVC superphylum: exceptions to the bacterial definition? Antonie Van Leeuwenhoek 104:451–466

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271:501

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W (1985) Genes-in-pieces revisited. Science 228:823–824

    Article  CAS  PubMed  Google Scholar 

  • Glansdorf N (1999) On the origin of operons and their possible role in evolution towards thermophily. J Mol Evol 49:432–438

    Article  Google Scholar 

  • Gribaldo S, Poole AM, Daubin V, Forterre P, Brochier-Armanet C (2010) The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat Rev Microbiol 8:743–752

    Article  CAS  PubMed  Google Scholar 

  • Harish A, Tunlid A, Kurland CG (2013) Rooted phylogeny of the three superkingdoms. Biochimie 95:1593–1604

    Article  CAS  PubMed  Google Scholar 

  • Hawkins M, Malla S, Blythe MJ, Nieduszynski CA, Allers T (2013) Accelerated growth in the absence of DNA replication origins. Nature 503:544–547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He D, Fiz-Palacios O, Fu C-J, Fehling J, Tsai C-C, Baldauf SL (2014) An alternative root for the eukaryote tree of life. Curr Biol 24:465–470

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2013) Nucleosomes and centromeric DNA packaging. Proc Natl Acad Sci USA 110:19974–19975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938

    Article  CAS  PubMed  Google Scholar 

  • Jeffares DG, Poole AM, Penny D (1998) Relics from the RNA world. J Mol Evol 46:18–36

    Article  CAS  PubMed  Google Scholar 

  • Jeffares DC, Mourier T, Penny D (2006) The biology of intron gain and loss. Trends Gen 22:16–22

    Article  CAS  Google Scholar 

  • Jeltsch A (2013) Oxygen, epigenetic signaling, and the evolution of early life. Trends Biochem Sci 38:172–176

    Article  CAS  PubMed  Google Scholar 

  • Joyce GF (2002) The antiquity if RNA-based evolution. Nature 418:214–221

    Article  CAS  PubMed  Google Scholar 

  • Kashtan N et al (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416–420

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ et al (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676

    Article  PubMed  Google Scholar 

  • Koonin EV (2010) The incredible expanding ancestor of eukaryotes. Cell 140:606–608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koonin EV (2014) Carl Woese’s vision of cellular evolution and the domains of life. RNA Biol 11:197–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koonin EV, Csuros M, Rogozin IB (2013) Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes. Wiley Interdis Rev RNA 4:93–105

    Article  CAS  Google Scholar 

  • Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312:1011–1014

    Article  CAS  PubMed  Google Scholar 

  • Lan R, Reeves PR (2000) Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 8:396–401

    Article  CAS  PubMed  Google Scholar 

  • Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci USA 104:19908–19913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehman N (2003) A case for the extreme antiquity of recombination. J Mol Evol 56:770–777

    Article  CAS  PubMed  Google Scholar 

  • Lindås A-C, Bernander R (2013) The cell cycle of archaea. Nat Rev Microbiol 11:627–638

    Article  PubMed  CAS  Google Scholar 

  • Lopez P, Forterre P, Philippe H (1999) The root of the tree of life in the light of the covarion model. J Mol Evol 49:496–508

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Abegg A (2010) The rate of establishment of complex adaptations. Mol Biol Evol 27:1404–1414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mans BJ, Anantharaman V, Aravind L, Koonin EV (2004) Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3:1612–1637

    Article  CAS  PubMed  Google Scholar 

  • Mossel E, Steel M (2004) A phase transition for a random cluster model on phylogenetic trees. Math Biosci 187:189–203

    Article  PubMed  Google Scholar 

  • Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP, Moazed D (2004) Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119:789–802

    Article  CAS  PubMed  Google Scholar 

  • Moulton V, Gardner PP, Pointon RF, Creamer LK, Jameson GB, Penny D (2000) RNA folding argues against a hot-start origin of life. J Mol Evol 51:416–421

    CAS  PubMed  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Article  Google Scholar 

  • Nardelli SC, Che F-Y (2013) The histone code of Toxoplasma gondii comprises conserved and unique posttranslational modifications. mBio 4:e00922

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Niklas KJ (2014) The evolutionary-developmental origins of multicellularity. Am J Bot 10:6–25

    Article  CAS  Google Scholar 

  • Orthwein O et al (2014) Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344:189–193

    Article  CAS  PubMed  Google Scholar 

  • Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci USA 108:13624–13629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Penny D (2005) An interpretive review of the origin of life research. Biol Philos 20:633–671

    Article  Google Scholar 

  • Penny D, Poole AM (1999) The nature of the universal ancestor. Curr Opin Gen Dev 9:672–677

    Article  CAS  Google Scholar 

  • Penny D, Poole AM (2003) Lateral gene transfer: some theoretical aspects. N Z BioSci 12:32–35

    Google Scholar 

  • Philippe N (2013) Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341:281–286

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Brinkmann H et al (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 9:e1000602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poole AM (2006) Did group II intron proliferation in an endosymbiont-bearing archaeon create eukaryotes? Biol Dir 1:6. doi:10.1186/1745-6150-1-36

    Article  CAS  Google Scholar 

  • Poole AM (2010) Eukaryote evolution: the importance of the stem group. In: Caetano-Anolles G (ed) Evolutionary genomics and systems biology. Wiley, New York

    Google Scholar 

  • Poole AM, Neumann N (2011) Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Res Microbiol 162:71–76

    Article  PubMed  Google Scholar 

  • Poole AM, Penny D (2007) Evaluating hypotheses for the origin of eukaryotes. BioEssays 29:74–84

    Article  PubMed  Google Scholar 

  • Poole AM, Phillips MJ, Penny D (2003) Prokaryote and eukaryote evolvability. BioSystems 69:163–185

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan G, Gilchrist CA, Musa H, Torok MS, Grant PA, Mann BJ, Petri WA Jr (2004) Histone acetylatransferases and deacetylase in Entamoeba histolytica. Mol Biochem Parasit 138:205–216

    Article  CAS  Google Scholar 

  • Reanney DC (1974) On the origin of prokaryotes. J Theor Biol 48:243–251

    Article  CAS  PubMed  Google Scholar 

  • Roy SW (2006) Intron-rich ancestors. Trends Genet 22:468–471

    Article  CAS  PubMed  Google Scholar 

  • Simoes-Barbosa A, Hirt RP, Johnson PJ (2010) A metazoan/plant-like capping enzyme and cap modified nucleotides in the unicellular eukaryote Trichomonas vaginalis. PLoS Pathog 6:e1000999

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sonda S et al (2010) Epigenetic mechanisms regulate stage differentiation in the minimized protozoan Giardia lamblia. Mol Microbiol 76:48–67

    Article  CAS  PubMed  Google Scholar 

  • Strobel SA (2013) Metal ghosts in the splicing machine. Nature 503:201–202

    CAS  PubMed  Google Scholar 

  • Sullivan WJ Jr, Nuguleswaran A, SO Angel (2006) Histones and histone modifications in protozoan parasites. Cell Microbiol 8:1850–1861

    Article  CAS  PubMed  Google Scholar 

  • Trenholme K, Marek L, Duffy S (2014) Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules. Antimicrob Agents Chemother 58:3666–3678

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vesteg M, Sandorova Z, Krajcovic J (2012) Selective forces for the origin of spliceosomes. J Mol Evol 74:226–231

    Article  CAS  PubMed  Google Scholar 

  • White WTJ, Zhong B, Penny D (2013) Beyond reasonable doubt: evolution from DNA sequences. PLoS ONE 8:e69924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilkins A, Holliday R (2009) The evolution of meiosis from mitosis. Genetics 181:3–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Williams TA, Foster PG, Cox CJ, Embley TM (2013) An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504:231–236

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu XM, Tronholm A et al (2013) Evidence for deep phylogenetic conservation of exonic splice-related constraints: splice-related skews at exonic ends in the brown alga Ectocarpus are common and resemble those seen in humans. Gen Biol Evol 5:1731–1745

    Article  CAS  Google Scholar 

  • Yi S (2012) Birds do it, bees do it, worms and ciliates do it too: DNA methylation from unexpected corners of the tree of life. Genome Biol 13:174

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao L, Saelao P, Jones CD, Begun DJ (2014) Origin and spread of de novo genes in Drosophila melanogaster populations. Science 343:769–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zubkov MV, Tarran GA (2008) High bacterivory by the smallest phytoplankton in the North Atlantic ocean. Nature 455:224–226

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was started for the Les Treilles foundation workshop on ‘The origins of sex and of modern eukaryotes’ held in the south of France in July 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Penny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penny, D., Collins, L.J., Daly, T.K. et al. The Relative Ages of Eukaryotes and Akaryotes. J Mol Evol 79, 228–239 (2014). https://doi.org/10.1007/s00239-014-9643-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-014-9643-y

Keywords

Navigation