Skip to main content

Advertisement

Log in

The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Cerebral arterial, venous and cerebrospinal fluid (CSF) pulsations are closely coupled and this produces pulsation dampening or the windkessel effect. Normal pressure hydrocephalus is a manifestation of the breakdown of this windkessel effect with altered CSF and venous pulsations being noted. The aim of this study was to show that dysfunction of the windkessel mechanism is also a component of normal aging and senile dementia.

Methods

The study group comprised 24 patients classified as either early senile dementia of Alzheimer’s type (SDAT) or vascular dementia (VaD). The patients with dementia were compared with 12 age-matched non-cognitively impaired subjects, and 12 normal young individuals were compared with the normal aging group. MRI flow quantification was used to measure the nonpulsatile and pulsatile components of blood flow as well as the pulsation at the tentorial incisura.

Results

With normal aging blood flow decreased but arterial pulsations increased in volume by 49% (P = 0.003). The CSF vented via the tentorial incisura does not change significantly with age and therefore increased venous pulsation is necessary. In patients with VaD the arterial pulse volume was higher by 24% and the straight sinus pulsation was higher by 57% than in normal aging subjects (P = 0.05 and P = 0.03, respectively). In patients with SDAT the total venous pulsation volumes were similar to those in normal aging subjects but there was less basal sinus pulsation.

Conclusion

Normal aging, SDAT and VaD are associated with alterations in venous pulsation due to a breakdown of the windkessel effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Greitz D (1993) Cerebrospinal fluid circulation and associated intracranial dynamics: a radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl 386:1–23

    PubMed  CAS  Google Scholar 

  2. Egnor M, Zheng L, Rosiello A, Gutman F, Davis R (2002) A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 36:281–303

    Article  PubMed  Google Scholar 

  3. Bateman GA (2000) Vascular compliance in normal pressure hydrocephalus. AJNR Am J Neuroradiol 21:1574–1585

    PubMed  CAS  Google Scholar 

  4. Bateman GA (2007) Magnetic resonance imaging quantification of compliance and collateral flow in late-onset idiopathic aqueductal stenosis: venous pathophysiology revisited. J Neurosurg 107:951–958

    Article  PubMed  Google Scholar 

  5. Bateman GA (2002) Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normal-pressure hydrocephalus. Neuroradiology 44:740–748

    Article  PubMed  CAS  Google Scholar 

  6. Bateman GA (2004) Pulse wave encephalopathy: a spectrum hypothesis incorporating Alzheimer’s disease, vascular dementia and normal pressure hydrocephalus. Med Hypothesis 62:182–187

    Article  Google Scholar 

  7. Stivaros SM, Jackson A (2007) Changing concepts of cerebrospinal fluid hydrodynamics: role of phase-contrast magnetic resonance imaging and implications for cerebral microvascular disease. Neurotherapeutics 4:511–522

    Article  PubMed  Google Scholar 

  8. Henry-Feugeas MC (2007) Alzheimer’s disease in late-life dementia: a minor toxic consequence of devastating cerebrovascular dysfunction. Med Hypotheses. DOI 10.1016/j.mehy.2007.07.027

  9. Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC (2006) Quantitative measurement of cerebral haemodynamics in early vascular dementia and Alzheimer’s disease. J Clin Neurosci 13:563–568

    Article  PubMed  Google Scholar 

  10. Evans AJ, Iwai F, Grist TA et al (1993) MR imaging of blood flow with a phase subtraction technique: in vitro and in vivo validation. Invest Radiol 28:109–115

    Article  PubMed  CAS  Google Scholar 

  11. Laffon E, Valli N, Latrabe V et al (1998) A validation of a flow quantification by MR phase mapping software. Eur J Radiol 27:166–172

    Article  PubMed  CAS  Google Scholar 

  12. Powell AJ, Maier SE, Chung T et al (2000) Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol 21:104–110

    Article  PubMed  CAS  Google Scholar 

  13. Enzmann DR, Pelc NJ (1993) Cerebrospinal fluid flow measured by phase-contrast cine MR. AJNR Am J Neuroradiol 14:1301–1307

    PubMed  CAS  Google Scholar 

  14. Guyton AC, Hall JE (eds) (2000) Textbook of medical physiology, 10th edn. Saunders, Philadelphia, pp 154–155

    Google Scholar 

  15. O’Rourke MF, Hashimoto J (2007) Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 50:1–13

    Article  PubMed  Google Scholar 

  16. Stoquart-ElSankari S, Baledent O, Gondry-Jouet C, Makki M, Godefroy O, Meyer ME (2007) Aging effects on cerebral blood flow and cerebrospinal fluid flows. J Cereb Blood Flow Metab 27:1563–1572

    Article  PubMed  Google Scholar 

  17. Czosnyka M, Czosnyka ZH, Whitfield PC, Donovan T, Picard JD (2001) Age dependence of cerebrospinal pressure-volume compensation in patients with hydrocephalus. J Neurosurg 94:482–486

    PubMed  CAS  Google Scholar 

  18. Kim J, Thacker NA, Bromiley PA, Jackson A (2007) Prediction of the jugular venous waveform using a model of CSF dynamics. AJNR Am J Neuroradiol 28:983–989

    PubMed  CAS  Google Scholar 

  19. Patankar T, Widjaja E, Chant H, McCollum C, Baldwin R, Jeffries S (2006) Relationship of deep white matter hyperintensities and cerebral blood flow in severe carotid artery stenosis. Eur J Neurol 13:10–16

    Article  PubMed  CAS  Google Scholar 

  20. Stopa EG, Berzin TM, Kim S, Song P, Kuo-LeBlanc V, Rodriguez-Wolf M et al (2001) Human choroid plexus growth factors: what are the implications for CSF dynamics in Alzheimer’s disease. Exp Neurol 167:40–47

    Article  PubMed  CAS  Google Scholar 

  21. Uftring SJ, Chu D, Alperin N, Levin DN (2000) The mechanical state of intracranial tissues in elderly subjects studied by imaging CSF and brain pulsations. Magn Reson Imaging 18:991–996

    Article  PubMed  CAS  Google Scholar 

  22. Higuchi Y, Miyakawa T, Shimoji A et al (1987) Ultrastructural changes of blood vessels in the cerebral cortex in Alzheimer’s disease. Jpn J Psychiatry Neurol 41:283–290

    PubMed  CAS  Google Scholar 

  23. Kalaria RN (1996) Cerebral vessels in aging and Alzheimer’s disease. Pharmacol Ther 72:193–214

    Article  PubMed  CAS  Google Scholar 

  24. Buee L, Hof PR, Delacourte A (1997) Brain microvascular changes in Alzheimer’s disease and other dementias. Ann N Y Acad Sci 26:7–24

    Article  Google Scholar 

  25. Farrall AJ, Wardlaw JM (2007) Blood-brain barrier: ageing and microvascular disease – systematic review and meta-analysis. Neurobiol Aging. DOI 10.1016/j.neurobiolaging.2007.07.015

  26. Esiri MM, Wilcock GK, Morris JH (1997) Neuropathological assessment of the lesions of significance in vascular dementia. J Neurol Neurosurg Psychiatry 63:749–753

    Article  PubMed  CAS  Google Scholar 

  27. Moody DM, Brown WR, Challa VR, Anderson RL (1995) Periventricular venous collagenosis: association with leukoaraiosis. Radiology 194:469–476

    PubMed  CAS  Google Scholar 

  28. Henry Feugeas MC, De Marco G, Peretti II, Gordon-Hardy S, Fredy D, Claeys ES (2005) Age-related cerebral white matter changes and pulse-wave encephalopathy: observations with three-dimensional MRI. Magn Res Imaging 23:929–937

    Article  Google Scholar 

  29. Schaller B (2004) Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Rev 46:243–260

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the grant of funding for this research by the Australian Brain Foundation and John Hunter Hospital Research Committee.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant A. Bateman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bateman, G.A., Levi, C.R., Schofield, P. et al. The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia. Neuroradiology 50, 491–497 (2008). https://doi.org/10.1007/s00234-008-0374-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-008-0374-x

Keywords

Navigation