Skip to main content
Log in

Cell–Cell Electrofusion: Optimization of Electric Field Amplitude and Hypotonic Treatment for Mouse Melanoma (B16-F1) and Chinese Hamster Ovary (CHO) Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Efficient electroporation of cells in physical contact induces cell fusion, and this process is known as electrofusion. It has been shown that appropriate hypotonic treatment of cells before the application of electric pulses can cause a significant increase in electrofusion efficiency. First, the amplitudes of the electric field were determined spectrofluorometrically, where sufficient permeabilization in hypotonic buffer occurred for B16-F1 and CHO cells. In further electrofusion experiments 14 ± 4% of fused cells for B16-F1 and 6 ± 1% for CHO was achieved. These electrofusion efficiencies, determined by double staining and fluorescence microcopy, are comparable to those of other published studies. It was also confirmed that successful electroporation does not necessarily guarantee high electrofusion efficiency due to biological factors involved in the electrofusion process. Furthermore, not only the extension of electrofusion but also cell survival depends on the cell line used. Further studies are needed to improve overall cell survival after electroporation in hypotonic buffer, which was significantly reduced, especially for B16-F1 cells. Another contribution of this report is the description of a simple modification of the adherence method for formation of spontaneous cell contact, while cells preserve their spherical shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe S, Takeda J (1988) Effects of La3+ on surface charges, dielectrophoresis, and electrofusion of barley protoplasts. Plant Physiol 87:389–394

    Article  CAS  PubMed  Google Scholar 

  • Abidor IG, Barbul AI, Zhelev DV, Doinov P, Bandrina IN, Osipova EM, Sukharev SI (1993) Electrical properties of cell pellets and cell electrofusion in a centrifuge. Biochim Biophys Acta 1152:207–218

    Article  CAS  PubMed  Google Scholar 

  • Ahkong QF, Lucy JA (1986) Osmotic forces in artificially induced cell fusion. Biochim Biophys Acta 858:206–216

    Article  CAS  PubMed  Google Scholar 

  • Barrau C, Teissie J, Gabriel B (2004) Osmotically induced membrane tension facilitates the triggering of living cell electropermeabilization. Bioelectrochemistry 63:327–332

    Article  CAS  PubMed  Google Scholar 

  • Blangero C, Rols MP, Teissié J (1989) Cytoskeletal reorganization during electric-field-induced fusion of Chinese hamster ovary cells grown in monolayers. Biochim Biophys Acta 981:295–302

    Article  CAS  PubMed  Google Scholar 

  • Castro-Garza J, Barrios-Garcia HB, Cruz-Vega DE, Said-Fernandez S, Carranza-Rosales P, Molina-Torres CA, Vera-Cabrera L (2007) Use of a colorimetric assay to measure differences in cytotoxicity of Mycobacterium tuberculosis strains. J Med Microbiol 56:733–737

    Article  CAS  PubMed  Google Scholar 

  • Cegovnik U, Novakovic S (2004) Setting optimal parameters for in vitro electrotransfection of B16F1, SA1, LPB, SCK, L929 and CHO cells using predefined exponentially decaying electric pulses. Bioelectrochemistry 62:73–82

    Article  CAS  PubMed  Google Scholar 

  • Cemazar M, Jarm T, Miklavcic D, Macek-Lebar A, Ihan A, Kopitar NA, Sersa G (1998) Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electromagn Biol Med 17:263–272

    Article  Google Scholar 

  • Chen EH, Grote E, Mohler W, Vignery A (2007) Cell–cell fusion. FEBS Lett 581:2181–2193

    Article  CAS  PubMed  Google Scholar 

  • Escoffre J-M, Portet T, Wasungu L, Teissie J, Dean D, Rols M-P (2009) What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol Biotechnol 41:286–295

    Article  CAS  PubMed  Google Scholar 

  • Evans EA, Parsegian VA (1986) Thermal–mechanical fluctuations enhance repulsion between bimolecular layers. Proc Natl Acad Sci USA 83:7132–7136

    Article  CAS  PubMed  Google Scholar 

  • Finaz C, Lefevre A, Teissie J (1984) Electrofusion. A new, highly efficient technique for generating somatic cell hybrids. Exp Cell Res 150:477–482

    Article  CAS  PubMed  Google Scholar 

  • Foung S, Perkins S, Kafadar K, Gessner P, Zimmermann U (1990) Development of microfusion techniques to generate human hybridomas. J Immunol Methods 134:35–42

    Article  CAS  PubMed  Google Scholar 

  • Gabrijel M, Repnik U, Kreft M, Grilc S, Jeras M, Zorec R (2004) Quantification of cell hybridoma yields with confocal microscopy and flow cytometry. Biochem Biophys Res Commun 314:717–723

    Article  CAS  PubMed  Google Scholar 

  • Gabrijel M, Kreft M, Zorec R (2008) Monitoring lysosomal fusion in electrofused hybridoma cells. Biochim Biophys Acta 1778:483–490

    Article  CAS  PubMed  Google Scholar 

  • Gabrijel M, Bergant M, Kreft M, Jeras M, Zorec R (2009) Fused late endocytic compartments and immunostimulatory capacity of dendritic–tumor cell hybridomas. J Membr Biol 229:11–18

    Article  CAS  PubMed  Google Scholar 

  • Gillies RJ, Didier N, Denton M (1986) Determination of cell number in monolayer cultures. Anal Biochem 159:109–113

    Article  CAS  PubMed  Google Scholar 

  • Golzio M, Mora M-P, Raynaud C, Delteil C, Teissié J, Rols M-P (1998) Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys J 74:3015–3022

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, Kufe D (2000) Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci USA 97:2715–2718

    Article  CAS  PubMed  Google Scholar 

  • Gottfried E, Krieg R, Eichelberg C, Andreesen R, Mackensen A, Krause SW (2002) Characterization of cells prepared by dendritic cell–tumor cell fusion. Cancer Immun 2:15

    PubMed  Google Scholar 

  • Hayashi T, Tanaka H, Tanaka J, Wang R, Averbook BJ, Cohen PA, Shu S (2002) Immunogenicity and therapeutic efficacy of dendritic–tumor hybrid cells generated by electrofusion. Clin Immunol 104:14–20

    Article  CAS  PubMed  Google Scholar 

  • James K, Bell GT (1987) Human monoclonal antibody production. J Immunol Methods 100:5–40

    Article  CAS  PubMed  Google Scholar 

  • Jantscheff P, Spagnoli G, Zajac P, Rochlitz C (2002) Cell fusion: an approach to generating constitutively proliferating human tumor antigen-presenting cells. Cancer Immunol Immunother 51:367–375

    Google Scholar 

  • Jaroszeski MJ, Gilbert R, Fallon PG, Heller R (1994) Mechanically facilitated cell–cell electrofusion. Biophys J 67:1574–1581

    Article  CAS  PubMed  Google Scholar 

  • Jaroszeski MJ, Gilbert R, Heller R (1995) Cytometric detection and quantitation of cell–cell electrofusion products. In: Nickoloff JA (ed) Animal cell electroporation and electrofusion protocols. Humana Press, Totowa, NJ, pp 355–363

    Chapter  Google Scholar 

  • Kanduser M, Sentjurc M, Miklavcic D (2006) Cell membrane fluidity related to electroporation and resealing. Eur Biophys J 35:196–204

    Article  PubMed  Google Scholar 

  • Knutton S, Jackson D, Graham JM, Micklem KJ, Pasternak CA (1976) Microvilli and cell swelling. Nature 262:52–54

    Article  CAS  PubMed  Google Scholar 

  • Kotnik T, Bobanovic F, Miklavcic D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43:6

    Article  Google Scholar 

  • Lambert IH (2007) Activation and inactivation of the volume-sensitive taurine leak pathway in NIH3T3 fibroblasts and Ehrlich Lettre ascites cells. Am J Physiol Cell Physiol 293:C390–C400

    Article  CAS  PubMed  Google Scholar 

  • Lee WT, Shimizu K, Kuriyama H, Tanaka H, Kjaergaard J, Shu S (2005) Tumor–dendritic cell fusion as a basis for cancer immunotherapy. Otolaryngol Head Neck Surg 132:755–764

    Article  PubMed  Google Scholar 

  • Macek-Lebar A, Miklavcic D (2001) Cell electropermeabilization to small molecules in vitro: control by pulse parameters. Radiol Oncol 35:10

    Google Scholar 

  • Mally MI, McKnight ME, Glassy MC (1992) Protocols of electroporation and electrofusion for producing human hybridomas. In: Chang D, Chassy B, Saunders J, Sowers A (eds) Guide to electroporation and electrofusion. Academic Press, San Diego, pp 507–522

    Google Scholar 

  • Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556

    Article  CAS  PubMed  Google Scholar 

  • Marty M, Sersa G, Garbay JR, Gehl J, Collins CG, Snoj M, Billard V, Geertsen PF, Larkin JO, Miklavcic D, Pavlovic I, Paulin-Kosir SM, Cemazar M, Morsli N, Rudolf Z, Robert C, O’Sullivan GC, Mir LM (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. EJC Suppl 4:3–13

    CAS  Google Scholar 

  • Matibiri EA, Mantell SH (1995) Comparative effects of fusion facilitators on electrofusion attributes of N. tabacum mesophyll protoplasts. Plant Cell Tissue Organ Culture 40:125–131

    Article  CAS  Google Scholar 

  • McIntosh TJ, Advani S, Burton RE, Zhelev DV, Needham D, Simon SA (1995) Experimental tests for protrusion and undulation pressures in phospholipid bilayers. Biochemistry 34:8520–8532

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TJ, Kulkarni KG, Simon SA (1999) Membrane fusion promoters and inhibitors have contrasting effects on lipid bilayer structure and undulations. Biophys J 76:2090–2098

    Article  CAS  PubMed  Google Scholar 

  • Mekid H, Mir LM (2000) In vivo cell electrofusion. Biochim Biophys Acta 1524:118–130

    CAS  PubMed  Google Scholar 

  • Miklavcic D, Towhidi L (2010) Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells. Radiol Oncol 44:8

    Google Scholar 

  • Mir LM (2009) Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future. Mol Biotechnol 43:167–176

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y, Kito H, Okauchi M (1993) Factors affecting the electrofusion efficiency of Porphyra protoplasts. J Appl Psychol 5:29–36

    Google Scholar 

  • Neil GA, Zimmermann U (1993) Electrofusion. Methods Enzymol 220:174–196

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Springer-Verlag, New York

    Google Scholar 

  • O’Hare MJ, Ormerod MG, Imrie PR, Peacock JH, Asche W (1989) Electropermeabilization and electrosensitivity of different types of mammalian cells. In: Neumann E, Sowers AE, Jordan CA (eds) Electroporation and electrofusion in cell biology. Plenum Press, New York, pp 319–330

    Google Scholar 

  • Ohno-Shosaku T, Okada Y (1985) Electric pulse-induced fusion of mouse lymphoma cells: roles of divalent cations and membrane lipid domains. J Membr Biol 85:269–280

    Article  CAS  PubMed  Google Scholar 

  • Pucihar G, Miklavcic D, Kotnik T (2009) A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans Biomed Eng 56:1491–1501

    Article  PubMed  Google Scholar 

  • Ramos C, Bonenfant D, Teissie J (2002) Cell hybridization by electrofusion on filters. Anal Biochem 302:213–219

    Article  CAS  PubMed  Google Scholar 

  • Rols MP, Teissie J (1989) Ionic-strength modulation of electrically induced permeabilization and associated fusion of mammalian cells. Eur J Biochem 179:109–115

    Article  CAS  PubMed  Google Scholar 

  • Rols MP, Teissie J (1990) Modulation of electrically induced permeabilization and fusion of Chinese hamster ovary cells by osmotic pressure. Biochemistry 29:4561–4567

    Article  CAS  PubMed  Google Scholar 

  • Rubinsky B, Onik G, Mikus P (2007) Irreversible electroporation: a new ablation modality–clinical implications. Technol Cancer Res Treat 6:37–48

    PubMed  Google Scholar 

  • Salomskaite-Davalgiene S, Cepurniene K, Satkauskas S, Venslauskas MS, Mir LM (2009) Extent of cell electrofusion in vitro and in vivo is cell line dependent. Anticancer Res 29:3125–3130

    PubMed  Google Scholar 

  • Salvi A, Quillan J, Sadée W (2002) Monitoring intracellular pH changes in response to osmotic stress and membrane transport activity using 5-chloromethylfluorescein. AAPS J 4:21–28

    Google Scholar 

  • Schmitt JJ, Zimmermann U (1989) Enhanced hybridoma production by electrofusion in strongly hypo-osmolar solutions. Biochim Biophys Acta 983:42–50

    Article  CAS  PubMed  Google Scholar 

  • Schnettlera R, Zimmermann U (1992) Zinc ions stimulate electrofusion of Hansenula polymorpha protoplasts. FEMS Microbiol Lett 106:47–51

    Article  Google Scholar 

  • Scott-Taylor TH, Pettengell R, Clarke I, Stuhler G, La Barthe MC, Walden P, Dalgleish AG (2000) Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines. Biochim Biophys Acta 1500:265–279

    CAS  PubMed  Google Scholar 

  • Sowers AE (1986) A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses. J Cell Biol 102:1358–1362

    Article  CAS  PubMed  Google Scholar 

  • Sowers AE (1989) Evidence that electrofusion yield is controlled by biologically relevant membrane factors. Biochim Biophys Acta 985:334–338

    Article  CAS  PubMed  Google Scholar 

  • Stenger DA, Kubiniec RT, Purucker WJ, Liang H, Hui SW (1988) Optimization of electrofusion parameters for efficient production of murine hybridomas. Hybridoma 7:505–518

    Article  CAS  PubMed  Google Scholar 

  • Stenger DA, Kaler KV, Hui SW (1991) Dipole interactions in electrofusion. Contributions of membrane potential and effective dipole interaction pressures. Biophys J 59:1074–1084

    Article  CAS  PubMed  Google Scholar 

  • Stevens RH, Macy E, Morrow C, Saxon A (1979) Characterization of a circulating subpopulation of spontaneous antitetanus toxoid antibody producing B cells following in vivo booster immunization. J Immunol 122:2498–2504

    CAS  PubMed  Google Scholar 

  • Stuhler G, Walden P (1994) Recruitment of helper T cells for induction of tumour rejection by cytolytic T lymphocytes. Cancer Immunol Immunother 39:342–345

    Article  CAS  PubMed  Google Scholar 

  • Sukharev SI, Bandrina IN, Barbul AI, Fedorova LI, Abidor IG, Zelenin AV (1990) Electrofusion of fibroblasts on the porous membrane. Biochim Biophys Acta 1034:125–131

    CAS  PubMed  Google Scholar 

  • Sukhorukov VL, Arnold WM, Zimmermann U (1993) Hypotonically induced changes in the plasma membrane of cultured mammalian cells. J Membr Biol 132:27–40

    CAS  PubMed  Google Scholar 

  • Sukhorukov VL, Reuss R, Zimmermann D, Held C, Müller KJ, Kiesel M, Geßner P, Steinbach A, Schenk WA, Bamberg E, Zimmermann U (2005) Surviving high-intensity field pulses: strategies for improving robustness and performance of electrotransfection and electrofusion. J Membr Biol 206:187–201

    Article  CAS  PubMed  Google Scholar 

  • Sukhorukov VL, Reuss R, Endter JM, Fehrmann S, Katsen-Globa A, Gessner P, Steinbach A, Muller KJ, Karpas A, Zimmermann U, Zimmermann H (2006) A biophysical approach to the optimisation of dendritic–tumour cell electrofusion. Biochem Biophys Res Commun 346:829–839

    Article  CAS  PubMed  Google Scholar 

  • Teissie J, Blangero C (1984) Direct experimental evidence of the vectorial character of the interaction between electric pulses and cells in cell electrofusion. Biochim Biophys Acta 775:446–448

    Article  CAS  PubMed  Google Scholar 

  • Teissie J, Ramos C (1998) Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes. Biophys J 74:1889–1898

    Article  CAS  PubMed  Google Scholar 

  • Teissie J, Rols MP (1986) Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization. Biochem Biophys Res Commun 140:258–266

    Article  CAS  PubMed  Google Scholar 

  • Teissie J, Knutson VP, Tsong TY, Lane MD (1982) Electric pulse-induced fusion of 3T3 cells in monolayer culture. Science 216:537–538

    Article  CAS  PubMed  Google Scholar 

  • Trontelj K, Rebersek M, Kanduser M, Serbec VC, Sprohar M, Miklavcic D (2008) Optimization of bulk cell electrofusion in vitro for production of human–mouse heterohybridoma cells. Bioelectrochemistry 74:124–129

    Article  CAS  PubMed  Google Scholar 

  • Urano N, Higashikawa R, Hirai H (1998) Effects of mitochondria on electrofusion of yeast protoplasts. Enzyme Microbial Technol 23:107–112

    Article  CAS  Google Scholar 

  • Usaj M, Trontelj K, Hudej R, Kanducer M, Miklavcic D (2009) Cell size dynamics and viability of cells exposed to hypotonic treatment and electroporation for electrofusion optimization. Radiol Oncol 43:108–119

    Article  Google Scholar 

  • Vienken J, Zimmermann U (1985) An improved electrofusion technique for production of mouse hybridoma cells. FEBS Lett 182:278–280

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lu C (2006) Microfluidic cell fusion under continuous direct current voltage. Appl Physics Lett 89:234102–234103

    Article  Google Scholar 

  • Wu Y, Montes JG, Sjodin RA (1992) Determination of electric field threshold for electrofusion of erythrocyte ghosts. Comparison of pulse-first and contact-first protocols. Biophys J 61:810–815

    Article  CAS  PubMed  Google Scholar 

  • Yu X, McGraw PA, House FS, Crowe JE Jr (2008) An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies. J Immunol Methods 336:142–151

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Chang DC (1991) Reorganization of cytoplasmic structures during cell–cell fusion. J Cell Sci 100:431–442

    PubMed  Google Scholar 

  • Zimmermann U (1982) Electric field–mediated fusion and related electrical phenomena. Biochim Biophys Acta 694:227–277

    CAS  PubMed  Google Scholar 

  • Zimmermann U, Neil GA (1996) Electromanipulation of cells. CRC, Boca Raton, FL

    Google Scholar 

  • Zimmermann U, Friedrich U, Mussauer H, Gessner P, Hamel K, Sukhoruhov V (2000) Electromanipulation of mammalian cells: fundamentals and application. IEEE Trans Plasma Sci 28:72–82

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Slovenian Research Agency (ARRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maša Kandušer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ušaj, M., Trontelj, K., Miklavčič, D. et al. Cell–Cell Electrofusion: Optimization of Electric Field Amplitude and Hypotonic Treatment for Mouse Melanoma (B16-F1) and Chinese Hamster Ovary (CHO) Cells. J Membrane Biol 236, 107–116 (2010). https://doi.org/10.1007/s00232-010-9272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9272-3

Keywords

Navigation