Skip to main content
Log in

Gap Junctions and Cochlear Homeostasis

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Gap junctions play a critical role in hearing and mutations in connexin genes cause a high incidence of human deafness. Pathogenesis mainly occurs in the cochlea, where gap junctions form extensive networks between non-sensory cells that can be divided into two independent gap junction systems, the epithelial cell gap junction system and the connective tissue cell gap junction system. At least four different connexins have been reported to be present in the mammalian inner ear, and gap junctions are thought to provide a route for recycling potassium ions that pass through the sensory cells during the mechanosensory transduction process back to the endolymph. Here we review the cochlear gap junction networks and their hypothesized role in potassium ion recycling mechanism, pharmacological and physiological gating of cochlear connexins, animal models harboring connexin mutations and functional studies of mutant channels that cause human deafness. These studies elucidate gap junction functions in the cochlea and also provide insight for understanding the pathogenesis of this common hereditary deafness induced by connexin mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Ahmad S., Chen S., Sun J., Lin X. 2003. Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem. Biophys. Res. Commun. 307:362–368

    Article  PubMed  CAS  Google Scholar 

  • Barrio L.C., Suchyna T., Bargiello T., Xu L.X., Roginski R.S., Bennett M., Nicholson B.J. 1991. Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc. Natl. Acad. Sci. USA 88:8410–8414

    Article  PubMed  CAS  Google Scholar 

  • Beltramello M., Bicego M., Piazza V., Ciubotaru C.D., Mammano F., D’Andrea P. 2003. Permeability and gating properties of human connexins 26 and 30 expressed in HeLa cells. Biochem. Biophys. Res. Commun. 305:1024–1033

    Article  PubMed  CAS  Google Scholar 

  • Beltramello M., Piazza V., Bukauskas F.F., Pozzan T., Mammano F. 2005. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat. Cell. Biol. 7:63–69

    Article  PubMed  CAS  Google Scholar 

  • Bennett M.V.L., Barrio L.C., Bargiello T.A., Spray D.C., Hertzberg E., Saez J.C. 1991. Gap junctions: New tools, new answers, new questions. Neuron 6:305–320

    Article  PubMed  CAS  Google Scholar 

  • Bevans C.G., Kordel M., Rhee S.K., Harris A.L. 1998. Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J. Biol. Chem. 273:2808–2816

    Article  PubMed  CAS  Google Scholar 

  • Blasits S., Maune S., Santos-Sacchi J. 2000. Nitric oxide uncouples gap junctions of supporting Deiters cells from Corti’s organ. Pflügers Arch. 440:710–712

    Article  PubMed  CAS  Google Scholar 

  • Blödow A., Ngezahayo A., Ernst A., Kolb H.A. 2003. Calmodulin antagonists suppress gap junction coupling in isolated Hensen cells of the guinea pig cochlea. Pflügers Arch. 446:36–41

    PubMed  Google Scholar 

  • Boettger T., Hubner C.A., Maler H., Rust M.B., Beck F.X., Jentsch T.J. 2002. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416:874–878

    Article  PubMed  CAS  Google Scholar 

  • Boettger T., Rust M.B., Maier H., Seidenbecher T., Schweizer M., Keating D.J., Faulhaber J., Ehmke H., Pfeffer C., Scheel O., Lemcke B., Horst J., Leuwer R., Pape H.-C., Volkl H., Hubner A., Jentsch T.J. 2003. Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold. EMBO J. 22:5422–5434

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone R., Cohen-Salmon M. 2005. Hearing the messenger: Ins(1,4,5) P3 and deafness. Nat. Cell Biol. 7:14–16

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone R., Veronesi V., Gomes D., Bicego M., Duval N., Marlin S., Petit C., D’Andrea P., White T.W. 2003. Loss-of-function and residual channel activity of connexin26 mutations associated with non-syndromic deafness. FEBS Lett. 533:79–88

    Article  PubMed  CAS  Google Scholar 

  • Buniello A., Montanaro D., Volinia S., Gasparini P., Marigo V. 2004. An expression atlas of connexin genes in the mouse. Genomics 83:812–820

    Article  PubMed  CAS  Google Scholar 

  • Cao F., Eckert R., Elfgang C., Nitsche J.M., Snyder S.A., Hulser D.F., Willecke K., Nicholson B.J. 1998. A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes. J. Cell. Sci. 111:31–43

    PubMed  CAS  Google Scholar 

  • Choung Y.H., Moon S.K., Park H.J. 2002. Functional study of GJB2 in hereditary hearing loss. Laryngoscope 112:1667–1671

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Salmon M., Maxeiner S., Kruger O., Theis M., Willecke K., Petit C. 2004. Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res. 316:15–22

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Salmon M., Ott T., Michel V., Hardelin J.P., Perfettini I., Eybalin M., Wu T., Marcus D.C., Wangemann P., Willecke K., Petit C. 2002. Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr. Biol. 12:1106–1111

    Article  PubMed  CAS  Google Scholar 

  • Crouch J.J., Sakaguchi N., Lytle C., Schulte B.A. 1997. Immunohistochemical localization of the Na-K-Cl co-transporter (NKCC1) in the gerbil inner ear. J. Histochem. Cytochem. 45:773–778

    PubMed  CAS  Google Scholar 

  • Dahl E., Manthey D., Chen Y., Schwarz H.J., Chang Y.S., Lalley P.A., Nicholson B.J., Willecke K. 1996. Molecular cloning and functional expression of mouse connexin-30,a gap junction gene highly expressed in adult brain and skin. J. Biol. Chem. 271:17903–17910

    Article  PubMed  CAS  Google Scholar 

  • D’Andrea P., Veronesi V., Bicego M., Melchionda S., Zelante L., Di Iorio E., Bruzzone R., Gasparini P. 2002. Hearing loss: frequency and functional studies of the most common connexin26 alleles. Biochem. Biophys. Res. Commun. 296:685–691

    Article  PubMed  CAS  Google Scholar 

  • Elfgang C., Eckert R., Lichtenberg-Frate H., Butterweck A., Traub O., Klein R.A., Hulser D.F., Willecke K. 1995. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J. Cell. Biol. 129:805–817

    Article  PubMed  CAS  Google Scholar 

  • Essenfelder G.M., Bruzzone R., Lamartine J., Charollais A., Blanchet-Bardon C., Barbe M.T., Meda P., Walksman G. 2004. Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum. Mol. Genet. 13:1703–1714

    Article  PubMed  CAS  Google Scholar 

  • Estivill X., Fortina P., Surrey S., Rabionet R., Melchionda S., D’Agruma L., Mansfield E., Rappaport E., Govea N., Mila M., Zelante L., Gasparini. P. 1998. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 351:394–398

    Article  PubMed  CAS  Google Scholar 

  • Forge A., Becker D., Casalotti S., Edwards J., Evans W.H., Lench N., Souter M. 1999. Gap junctions and connexin expression in the inner ear. Novartis Found. Symp. 219:134–156

    Article  PubMed  CAS  Google Scholar 

  • Forge A., Becker D., Casalotti S., Edwards J., Marziano N., Nevill G. 2003. Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. J. Comp. Neurol. 467:207–231

    Article  PubMed  Google Scholar 

  • Gabriel H.D., Jung D., Butzler C., Temme A., Traub O., Winterhager E., Willecke K. 1998. Transplacental uptake of glucose is decreased in embryonic lethal connexin26-deficient mice. J. Cell Biol. 140:1453–1461

    Article  PubMed  CAS  Google Scholar 

  • Goldberg G.S., Valiunas V., Brink P.R. 2004. Selective permeability of gap junction channels. Biochim. Biophys. Acta. 1662:96–101

    Article  PubMed  CAS  Google Scholar 

  • Grifa A., Wagner C.A., D’Ambrosio L., Melchionda S., Bernardi F., Lopez-Bigas N., Rabionet R., Arbones M., Monica M.D., Estivill X., Zelante L., Lang F., Gasparini P. 1999. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat. Genet. 23:16–18

    PubMed  CAS  Google Scholar 

  • Gulley R.S., Reese T.S. 1976. Intercellular junctions in the reticular lamina of the organ of Corti. J. Neurocytol. 5:479–507

    Article  PubMed  CAS  Google Scholar 

  • Hama K., Saito K. 1977. Gap junctions between the supporting cells in some acousticovestibular receptors. J. Neurocytol. 6:1–12

    Article  PubMed  CAS  Google Scholar 

  • Harris AL. 2001. Emerging issues of connexin channels: biophysics fills the gap. Q. Rev. Biophys. 34:325–472

    PubMed  CAS  Google Scholar 

  • Iurato S., Franke K., Luciano L., Wermber G., Pannese E., Reale E. 1976. Intercellular junctions in the organ of Corti as revealed by freeze fracturing. Acta. Otolaryngol. 82:57–69

    PubMed  CAS  Google Scholar 

  • Jahnke K. 1975. The fine structure of freeze-fractured intercellular junctions in the guinea pig inner ear. Acta. Otolaryngol. 336:1–40

    CAS  Google Scholar 

  • Kelsell D.P., Dunlop J., Stevens H.P., Lench N.J., Liang J.N., Parry G., Mueller R.F., Leigh I.M. 1997. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83

    Article  PubMed  CAS  Google Scholar 

  • Kenneson A., Van Naarden Braun K., Boyle C. 2002. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review. Genet. Med. 4:258–274

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T. Adams J.C., Miyabe Y., So E., Kobayashi T. 2000a. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med. Electron Microsc. 33:51–56

    Article  CAS  Google Scholar 

  • Kikuchi T., Kimura R.S., Paul D.L., Adams J.C. 1995. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat. Embryol. 191:101–118

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T., Kimura R.S., Paul D.L., Takasaka T., Adams J.C. 2000b. Gap junction systems in the mammalian cochlea. Brain Res. Brain Res. Rev. 32:163–166

    Article  CAS  Google Scholar 

  • Kudo T., Kure S., Ikeda K., Xia A.P., Katori Y., Suzuki M., Kojima K., Ichinohe A., Suzuki Y,, Aoki Y., Kobayashi T., Matsubara Y. 2003. Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and non-syndromic deafness. Hum. Mol. Genet. 12:995–1004

    Article  PubMed  CAS  Google Scholar 

  • Lautermann J., ten Cate W.J.F., Altenhoff P., Grümmer R. Traub O., Frank H.G., Janhke K., Winterhager E. 1998. Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res. 294:415–420

    Article  PubMed  CAS  Google Scholar 

  • Locke D., Stein T., Davies C., Morris J., Harris A.L., Evans W.H., Monaghan P., Gusterson B. 2004. Altered permeability and modulatory character of connexin channels during mammary gland development. Exp. Cell Res. 298:643–660

    Article  PubMed  CAS  Google Scholar 

  • Lin D., Takemoto D.J. 2005. Oxidative activation of protein kinase Cγ through the C1 domain. Effects on gap junctions. J. Biol. Chem. 280:13682–13693

    Article  PubMed  CAS  Google Scholar 

  • Manthey D., Banach K., Desplantez T., Lee C.G., Kozak C.A., Traub O., Weingart R., Willecke K. 2001. Intracellular domains of mouse connexin26 and -30 affect diffusional and electrical properties of gap junction channels. J. Membrane. Biol. 181:137–148

    CAS  Google Scholar 

  • Martin P.E., Coleman S.L., Casalotti S.O., Forge A., Evans W.H. 1999. Properties of connexin26 gap junctional proteins derived from mutations associated with non-syndromal heriditary deafness. Hum. Mol. Genet. 8:2369–2376

    Article  PubMed  CAS  Google Scholar 

  • Marziano N.K., Casalotti S.O., Portelli A.E., Becker D.L., Forge A. 2003. Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Hum. Mol. Genet. 12:805–812

    Article  PubMed  CAS  Google Scholar 

  • Melchionda S., Bicego M., Marciano E., Franzè A., Morgutti M., Bortone G., Zelante L., Carella M., D’Andrea P. 2005. Functional characterization of a novel Cx26 (T55N) mutation associated to non-syndromic hearing loss. Biochem. Biophys. Res. Comm. 337:799–805

    Article  PubMed  CAS  Google Scholar 

  • Meşe G., Londin E., Mui R., Brink P.R., White T.W. 2004. Altered gating properties of functional Cx26 mutants associated with recessive non-syndromic hearing loss. Hum. Genet. 115:191–199

    PubMed  Google Scholar 

  • Moreno A.P. 2005. Connexin phosphorylation as a regulatory event linked to channel gating. Biochim. Biophys. Acta 1711:172–182

    Article  CAS  Google Scholar 

  • Nicholson B.J., Weber P.A., Cao F., Chang H., Lampe P., Goldberg G. 2000. The molecular basis of selective permeability of connexins is complex and includes both size and charge. Braz. J. Med. Biol. Res. 33:369–378

    Article  PubMed  CAS  Google Scholar 

  • Oesterle E.C., Dallos P. 1990. Intracellular recordings from supporting cells in the guinea pig cochlea: DC potentials. J. Neurophysiol. 64:617–636

    PubMed  CAS  Google Scholar 

  • Oh S., Rubin J.B., Bennett M.V., Verselis V.K., Bargiello T.A. 1999. Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32. J. Gen. Physiol. 114:339–364

    Article  PubMed  CAS  Google Scholar 

  • Peracchia C., Bernadini G., Pernacchia L.L. 1983. Is calmodulin involved in the regulation of gap junction permeability? Pfügers Arch. 399:152–154

    Article  Google Scholar 

  • Peracchia C., Sotkis A., Wang X.G., Pernacchia L.L., Persechini A. 2000. Calmodulin directly gates gap junction channels. J. Biol. Chem. 275:26220–26224

    Article  PubMed  CAS  Google Scholar 

  • Piazza V., Beltramello M., Menniti M., Colao E., Malatesta P., Argento R., Chiarella G., Gallo L.V., Catalano M., Perrotti N., Mammano F., Cassandro E. 2005. Functional analysis of R75Q mutation in the gene coding for Connexin 26 identified in a family with nonsyndromic hearing loss. Clin. Genet. 68:161–166

    Article  PubMed  CAS  Google Scholar 

  • Rabionet R., Gasparini P., Estivill X. 2000. Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum. Mutat. 16:190–202

    Article  PubMed  CAS  Google Scholar 

  • Richard G., White T.W., Smith L.E., Bailey R.A., Compton J.G., Paul D.L., Bale S.J. 1998. Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Hum. Genet. 103:393–399

    Article  PubMed  CAS  Google Scholar 

  • Rubin J.B., Verselis V.K., Bennett M.V.L., Bargiello T.A. 1992. Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexins 26 and 32. Biophys. J. 62:183–195

    Article  PubMed  CAS  Google Scholar 

  • Santos-Sacchi J. 1985. The effects of cytoplamic acidification upon electrical coupling in the organ of corti. Hear. Res. 19:207–215

    Article  PubMed  CAS  Google Scholar 

  • Santos-Sacchi J. 1986. Temperature dependence of electrical coupling in organ of Corti. Hear. Res. 21:205–211

    Article  PubMed  CAS  Google Scholar 

  • Santos-Sacchi J. 1987. Cell coupling differs in the in vitro and in vivo organ of Corti. Hear. Res. 25:227–232

    Article  PubMed  CAS  Google Scholar 

  • Santos-Sacchi J. 2000. Cell coupling in the organ of Corti. Brain Res. Brain Res. Rev. 32:167–171

    Article  PubMed  CAS  Google Scholar 

  • Santos-Sacchi J., Dallos P. 1983. Intercellular communication in the supporting cells of the organ of Corti. Hear. Res. 9:317–326

    Article  PubMed  CAS  Google Scholar 

  • Sato Y., Handa T., Matsumura M., Orita Y. 1998. Gap junction change in supporting cells of organ of Corti with ryanodine and caffeine. Acta. Otolaryngol. 118:821–825

    Article  PubMed  CAS  Google Scholar 

  • Sato Y., Santos-Sacchi J. 1994. Cell coupling in the supporting cells of Corti’s organ: sensitivity to intracellular H+ and Ca2+. Hear. Res. 80:21–24

    Article  PubMed  CAS  Google Scholar 

  • Schulte B.A., Adams J.C. 1989. Distribution of immunoreactive Na+,K+-ATPase in the gerbil cochlea. J. Histochem. Cytochem. 7:127–134

    Google Scholar 

  • Spicer S.S., Schulte B.A. 1996. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear. Res. 100:80–100

    Article  PubMed  CAS  Google Scholar 

  • Sun J., Ahmad S., Chen S., Tang W., Zhang Y., Chen P., Lin X. 2005. Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am. J. Physiol. 288:C613-C623

    Article  CAS  Google Scholar 

  • Suzuki T., Takamatsu T., Oyamada M. 2003. Expression of gap junction protein connexin43 in the adult rat cochlea: comparison with connexin26. J. Histochem. Cytochem. 51:903–912

    PubMed  CAS  Google Scholar 

  • Teubner B., Michel V., Pesch J., Lautermann J., Cohen-Salmon M., Sohl G., Jahnke K., Winterhager E., Herberhold C., Hardelin J.P., Petit C., Willecke K. 2003. Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum. Mol. Genet. 12:13–21

    Article  PubMed  CAS  Google Scholar 

  • Thonnissen E., Rabionet R., Arbones M.L., Estivill X., Willecke K., Ott T. 2002. Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum. Genet. 111:190–197

    Article  PubMed  CAS  Google Scholar 

  • Todt I., Ngezahayo A., Ernst A., Kolb H.A. 1999. Inhibition of gap junctional coupling in cochlear supporting cells by gentamicin. Pflügers Arch. 438:865–867

    Article  PubMed  CAS  Google Scholar 

  • Todt I., Ngezahayo A., Ernst A., Kolb H.A. 2001. Hydrogen peroxide inhibits gap junctional coupling and modulates intracellular free calcium in cochlear Hensen cells. J. Membrane. Biol. 181:107–114

    CAS  Google Scholar 

  • Traub O., Look J., Dermietzel R., Brummer F., Hulser D., Willecke K. 1986. Comparative characterization of the 21-kD and 26-kD gap junction proteins in murine liver and cultured hepatocytes. J. Cell Biol. 108:1039–1051

    Article  Google Scholar 

  • Valiunas V., Manthey D., Vogel R., Willecke K., Weingart R. 1999. Biophysical properties of mouse connexin30 gap junction channels studied in transfected human HeLa cells. J. Physiol. 519:631–644

    Article  PubMed  CAS  Google Scholar 

  • Valiunas V., Polosina Y.Y., Miller H., Potapova I.A., Valiuniene L., Doronin S., Mathias R.T., Robinson R.B., Rosen M.R., Cohen I.S., Brink P.R. 2005. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J. Physiol. 568:459–468

    Article  PubMed  CAS  Google Scholar 

  • Valiunas V., Weingart R. 2000. Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pflügers Arch. 440:366–379

    Article  PubMed  CAS  Google Scholar 

  • Veenstra RD. 1996. Size and selectivity of gap junction channels formed from different connexins. J. Bioenerg. Biomembr. 28:327–337

    Article  PubMed  CAS  Google Scholar 

  • Verselis V.K., Ginter C.S., Bargiello T.A. 1994. Opposite voltage gating polarities of two closely related connexins. Nature 368:348–351

    Article  PubMed  CAS  Google Scholar 

  • Wang H.L., Chang W.T., Li A.H., Yeh T.H., Wu C.Y., Chen M.S., Huang P.C. 2003. Functional analysis of connexin-26 mutants associated with hereditary recessive deafness. J. Neurochem. 84:735–742

    Article  PubMed  CAS  Google Scholar 

  • White T.W. 2000. Functional analysis of human Cx26 mutations associated with deafness. Brain Res. Brain Res. Rev. 32:181–183

    Article  PubMed  CAS  Google Scholar 

  • White T.W., Bruzzone R. 1996. Multiple connexin proteins in single intercellular channels: connexin compatibility and functional consequences. J. Bioenerg. Biomembr. 28:339–350

    Article  PubMed  CAS  Google Scholar 

  • White T.W., Bruzzone R., Goodenough D.A., Paul D.L. 1994. Voltage gating of connexins. Nature 371:208–209

    Article  PubMed  CAS  Google Scholar 

  • White T.W., Deans M.R., Kelsell D.P., Paul D.L. 1998. Connexin mutations in deafness. Nature 394:630–631

    Article  PubMed  CAS  Google Scholar 

  • Xia A.P., Ikeda K., Katori Y., Oshima T., Kikuchi T., Takasaka T. 2000. Expression of connexin 31 in the developing mouse cochlea. Neuroreport 11:2449–2453

    PubMed  CAS  Google Scholar 

  • Xia J.H., Liu C.Y., Tang B.S., Pan Q., Huang L., Dai H.P., Zhang B.R., Xie W., Hu D.X., Zheng D., Shi X.L., Wang D.A., Xia K., Yu K.P., Liao X.D., Feng Y., Yang Y.F., Xiao J.Y., Xie D.H., Huang J.Z. 1998. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat. Genet. 20:370–373

    Article  PubMed  CAS  Google Scholar 

  • Zelante L., Gasparini P., Estivill X., Melchionda S., D’Agruma L., Govea N., Mila M., Monica M.D., Lutfi J., Shohat M., Mansfield E., Delgrosso K., Rappaport E., Surrey S., Fortina P. 1997. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum. Mol. Genet. 6:1605–1609

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Tang W., Ahmad S., Sipp J.A., Chen P., Lin X. 2005. Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions. Proc. Natl. Acad. Sci. USA 102:15201–15206

    Article  PubMed  CAS  Google Scholar 

  • Zhao H.B., Santos-Sacchi J. 1998. Effect of membrane tension on gap junctional conductance of supporting cells in Corti’s organ. J. Gen. Physiol. 112:447–455

    Article  PubMed  CAS  Google Scholar 

  • Zhao H.B., Santos-Sacchi J. 1999. Auditory collusion and a coupled couple of outer hair cells. Nature 399:359–362

    Article  PubMed  CAS  Google Scholar 

  • Zhao H.B., Santos-Sacchi J. 2000. Voltage gating of gap junctions in cochlear supporting cells: Evidence for nonhomotypic channels. J. Membrane. Biol. 175:17–24

    Article  CAS  Google Scholar 

  • Zhao H.B. 2000. Directional rectification of gap junctional voltage gating between Deiters cells in the inner ear of Guinea pig. Neurosci. Lett. 296:105–108

    Article  PubMed  CAS  Google Scholar 

  • Zhao H.B. 2005. Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. Eur. J. Neurosci. 21:1859–1868

    Article  PubMed  Google Scholar 

  • Zhao W., Lin Z.X., Zhang Z.Q. 2004. Cisplatin-induced premature senescence with concomitant reduction of gap junctions in human fibroblasts. Cell Res. 14:60–66

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki J.J., Slepecky N.B., Cefaratti L.K., Smith R.L. 1992. Ionic coupling among cells in the organ of Corti. Hear. Res. 57:175–194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge J.C. Adams (Harvard Medical School) and G. Meşe (SUNY Stony Brook) for their critical reading of this manuscript. Work in our laboratories is supported in part by NIH grants DC06652 (T.W.W.) and DC05989 (H.-B.Z.). We apologize to colleagues whose work could not be cited here due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. White.

Additional information

H.-B. Zhao, T. Kikuchi, A. Ngezahayo, T. W. White contributed equally to this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, HB., Kikuchi, T., Ngezahayo, A. et al. Gap Junctions and Cochlear Homeostasis. J Membrane Biol 209, 177–186 (2006). https://doi.org/10.1007/s00232-005-0832-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0832-x

Keywords

Navigation