Skip to main content
Log in

Lexicographic multi-objective optimization of thermoacoustic refrigerator’s stack

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This work develops a novel mathematical programming model to optimize the performance of a simple thermoacoustic refrigerator (TAR). This study aims to optimize the geometric parameters namely the stack position, the stack length, the blockage ratio and the plate spacing involved in designing TARs. System parameters and constraints that capture the underlying thermoacoustic dynamics have been used to define the models. The cooling load, the coefficient of performance and the acoustic power loss have been used to measure the performance of the device. The optimization task is formulated as a three-criterion nonlinear programming problem with discontinuous derivatives (DNLP). Since we optimize multiple objectives simultaneously, each objective component has been given a weighting factor to provide appropriate user-defined emphasis. A practical example is given to illustrate the approach. We have determined a design statement of a stack describing how the geometrical parameters describing would change if emphasis is given to one objective in particular. We also considered optimization of multiple objectives components simultaneously and identify global optimal solutions describing the stack geometry using a lexicographic multi-objective optimization scheme. Additionally, this approach illustrates the difference between a design for maximum cooling and best coefficient of performance of a simple TAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a:

Speed of sound (m/s)

BR:

Blockage ratio

cp :

Isobaric specific heat capacity (J/kgK)

COP:

Coefficient of performance of refrigerator

COPC:

Carnot coefficient of performance

COPR:

Relative coefficient of performance

diri :

Direction of ith objective

DR:

Drive ratio

f:

Frequency (Hz)

K:

Thermal conductivity (W/m K)

l:

Plate half thickness (mm)

LS :

Stack length (mm)

LSn :

Normalised stack length

min:

Minimize

max:

Maximize

pm :

Mean pressure (Pa)

ri :

Range of ith objective function

si :

Surplus of ith objective

Tm :

Mean temperature

Tmn :

Normalized temperature difference

XS :

Stack centre position (mm)

XSn :

Normalised stack position

wi :

Objective function component weight

\(\mathop {{\text{W}}_{2} }\limits^{\text{o}}\) :

Acoustic power loss

yo :

Plate half-gap (mm)

δk :

Gas thermal penetration depth (mm)

δkn :

Normalised thermal penetration depth

δs :

Solid thermal penetration depth (mm)

δv :

Viscous penetration depth

γ:

Isentropic coefficient

εs :

Stack heat capacity correction factor

ω:

Angular frequency (rad/s)

ρm :

Density (kg/m3)

σ:

Prandtl number

θ:

Normalised temperature difference

∆Tm :

Temperature span (K)

Φc :

Normalized cooling load

ΦH :

Normalized heat flow

ΦW :

Normalized acoustic power

ξ:

Objective function

μ:

Dynamic viscosity (kg/m s)

λ:

Wavelength (mm)

εi :

Right hand side of ith objective function

References

  1. Joshi YK, Garimella SV (2003) Thermal challenges in next generation electronic systems. Microelectron J 34(3):169

    Article  Google Scholar 

  2. Swift GW (2002) Thermoacoustics: a unifying perspective for some engines and refrigerators. Acoustical society of America, Melville

    Google Scholar 

  3. Swift GW (1988) Thermoacoustic engines. J Acoust Soc Am 4:1146–1180

    Google Scholar 

  4. Tijani MEH, Zeegers JCH, De Waele ATAM (2002) Construction and performance of a thermoacoustic refrigerator. Cryogenics 42(1):59–66

    Article  Google Scholar 

  5. Wheatley JC, Hofler T, Swift GW, Migliori A (1985) Understanding some simple phenomena in thermoacoustics with applications to acoustical heat engines. Am J Phys 53:147–162

    Article  Google Scholar 

  6. Rao SS (1996) Engineering Optimization: theory and practice, 3rd edn. New York, Wiley

    Google Scholar 

  7. Wetzel M, Herman C (1997) Design optimization of thermoacoustic refrigerators. Int J Refrig 20(1):3–21

    Article  Google Scholar 

  8. Tijani MEH, Zeegers JCH, De Waele ATAM (2002) The optimal stack spacing for thermoacoustic refrigeration. J Acoust Soc Am 112(1):128–133

    Article  Google Scholar 

  9. Tu Q, Chen ZJ, Liu JX (2005) Numerical simulation of loudspeaker-driven thermoacoustic refrigerator. Proceedings of the twentieth International Cryogenic Engineering Conference (ICEC 20). Beijing, China

  10. Zoontjens L, Howard CQ, Zander AC(2006) Modelling and optimization of acoustic inertance segments for thermoacoustic devices. First Australasian Acoustical Societies ‘Conference: Acoustics: Noise of Progress, Clearwater Resort. Christchurch, New Zealand, 435–441

  11. Paek I, Braun JE, Mongeau L (2007) Evaluation of standing-wave thermoacoustic cycles for cooling applications. Int J Refrig 30(6):1059–1071

    Article  Google Scholar 

  12. Akhavanbazaz M, Kamran Siddiqui MH, Bhat RB (2007) The impact of gas blockage on the performance of a thermoacoustic refrigerator. Exp Thermal Fluid Sci 32(1):231–239

    Article  Google Scholar 

  13. Nsofor EC, Ali A (2009) Experimental study on performance of thermoacoustic refrigerating system. Appl Therm Eng 29(13):2672–2679

    Article  Google Scholar 

  14. Wu F, Chen L, Shu A (2009) Constructal design of stack filled with parallel plates in standing-wave thermo-acoustic cooler. Cryogenics 49(3–4):107–111

    Article  Google Scholar 

  15. Ke H-B, Liu Y-W, He Y-L (2010) Numerical simulation and parameter optimization of thermoacoustic refrigerator driven at large amplitude. Cryogenics 50(1):28–35

    Article  Google Scholar 

  16. Piccolo A (2011) Numerical computation for parallel plate thermoacoustic heat exchangers in standing wave oscillatory flow. Int J Heat Mass Transf 54(21–22):4518–4530

    Article  MATH  Google Scholar 

  17. Hariharan NM, Sivashanmugam P (2013) Optimization of thermoacoustic refrigerator using response surface methodology. J Hydrodyn 25(1):72–82

    Article  Google Scholar 

  18. Herman C, Travnicek Z (2006) Cool sound: the future of refrigeration? Thermodynamic and heat transfer issues in thermoacoustic refrigeration. Heat Mass Transfer 42(6):492–500

    Article  Google Scholar 

  19. Mahmud S. (2005). MHD and porous media thermoacoustic stacks optimisation, Ph.D. thesis, Department of Mechanical Engineering, University of Waterloo, Waterloo, ON, Canada

  20. Tijani MEH (2001) Loudspeaker-driven thermo-acoustic refrigeration, Ph.D. thesis, Eindhoven University of Technology, Netherlands

  21. Tijani MEH, Zeegers JCH, De Waele ATAM (2002) Design of thermoacoustic refrigerators. Cryogenics 42(1):49–57

    Article  Google Scholar 

  22. Abdel-Rahman E, Azenui NC, Korovyanko I & Symko OG (2002) Size considerations in interfacing thermoacoustic coolers with electronics. Thermomechanical Phenomena in Electronic Systems-Proceedings of the Intersociety Conference. p 421

  23. Kuntz HL, Blackstock DT (1987) Attenuation of intense sinusoidal waves in air-saturated, bulk porous materials. J Acoust Soc Am 81(6):1723–1731

    Article  Google Scholar 

  24. Generalized Algebraic modelling Systems, (GAMS), [online]. http://www.gams.com

  25. Mavrotas G (2009) Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Ap Math Comp 213:455–465

    Article  MATH  MathSciNet  Google Scholar 

  26. Aghaei J, Amjady N, Shayanfar HA (2009) Multi-objective electricity market clearing considering dynamic security by lexicographic optimization and augmented epsilon constraint method”. Appl Soft Comp 11(4):3846–3858

    Article  Google Scholar 

  27. Marler T (2009) A Study of multi-objective optimization methods for engineering applications. VDM Verlag, Saarbrucken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Tartibu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartibu, L.K., Sun, B. & Kaunda, M.A.E. Lexicographic multi-objective optimization of thermoacoustic refrigerator’s stack. Heat Mass Transfer 51, 649–660 (2015). https://doi.org/10.1007/s00231-014-1440-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1440-z

Keywords

Navigation