Skip to main content
Log in

Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The effects of drying temperatures on the drying kinetics of garlic slices were investigated using a cabinet-type dryer. The experimental drying data were fitted best to the Page and Modified Page models apart from other theoretical models to predict the drying kinetics. The effective moisture diffusivities varied from 4.214 × 10−10 to 2.221 × 10−10 m2 s−1 over the temperature range studied, and activation energy was 30.582 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a, b, c, n :

Constants of models

k, k 0 , k 1 :

Rate constants in models, h−1

MR:

Moisture ratio

D eff :

Effective diffusivity (m2 s−1)

D 0 :

Pre-exponential factor of the Arrhenius equation (m2 s−1)

E a :

Activation energy (kJ mol−1)

L :

Half-thickness of the slab in samples, m

Mt :

Moisture content, g water g−1 dry matter

M e :

Equilibrium moisture content, g water g−1 dry matter

M 0 :

Initial moisture content, g water g−1 dry matter

N :

Number of observations

n :

Positive integer, constant

R 2 :

Correlation coefficient

RMSE:

Root mean square error

T :

Temperature, °C

t :

Drying time, min

χ 2 :

Reduced Chi-square

z :

Number of constants in models

References

  1. Akpinar EK, Midilli A, Bicer Y (2003) Experimental investigation of drying behaviour and conditons of pumpkin slice via a cyclone-type dryer. J Sci Food Agric 83:1480–1486

    Article  Google Scholar 

  2. Andritsos N, Dalampakis P, Kolios N (2003) Use of geothermal energy for tomato drying. GHC Bull 24:9–13

    Google Scholar 

  3. Doymaz I (2007) Air drying characteristics of tomotoes. J Food Eng 78:1291–1297

    Article  Google Scholar 

  4. Ertekin C, Yaldiz O (2004) Drying of eggplant and selection of a suitable thin layer drying model. J Food Eng 63:349–359

    Article  Google Scholar 

  5. Sharma GP, Prasad S (2001) Drying garlic (Allium sativum) cloves by microwave-hot air combination. J Food Eng 50:90–105

    Article  Google Scholar 

  6. Sahin AZ, Dincer I (2005) Prediction of drying times for irregular shaped multi-dimensional objects. J Food Eng 71:119–126

    Article  Google Scholar 

  7. Mujumdar AS (1987) Handbook of industrial drying. Marcel Dekker, New York

    Google Scholar 

  8. Midilli A, Kucuk H, Yapar Z (2002) A new model for single layer drying. Drying Technol 20:1503–1513

    Article  Google Scholar 

  9. Togrul H (2006) Suitable drying model for infrared drying of carrot. J Food Eng 77:610–619

    Article  Google Scholar 

  10. Kaleemullah S, Kailappan R (2005) Drying kinetics of red chilies in rotary dryer. Biosyst Eng 92:15–23

    Article  Google Scholar 

  11. Akpinar EK, Bicer Y (2005) Modeling of the drying of eggplants in thin-layers. Int J Food Sci Technol 40:273–281

    Article  Google Scholar 

  12. Yaldiz O, Ertekin C (2001) Thin layer solar drying of some different vegetables. Drying Technol 19:583–596

    Article  Google Scholar 

  13. Singh JN, Pandey KR (2012) Convective air drying characteristics of sweet potato cube (Ipomoea batatas L.). Food Bioprod Process 90:317–322

    Article  Google Scholar 

  14. Doymaz I (2005) Drying characteristics and kinetics of okra. J Food Eng 69:275–279

    Article  Google Scholar 

  15. Maskan M, Gogus F (1998) Sorption isotherms and drying characteristics of mulberry (Morus alba). J Food Eng 37:437–449

    Article  Google Scholar 

  16. Mota CL, Luciano C, Dias A, Barroca MJ, Guine RPF (2010) Convective drying of onion: kinetic and nutritional evaluation. Food Bioprod Process 88:115–123

    Article  Google Scholar 

  17. Demiray E, Tulek Y (2012) Thin-layer drying of tomato (Lycopersicum esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer. Heat Mass Transf 48:841–847

    Article  Google Scholar 

  18. Sacilik K, Keskin R, Elicin KA (2006) Mathematical modeling of solar tunnel drying of thin layer organic tomato. J Food Eng 73:231–238

    Article  Google Scholar 

  19. Madamba PS, Driscoll RH, Buckle KA (1996) The thin-layer drying characteristics of garlic slices. J Food Eng 29:75–97

    Article  Google Scholar 

  20. AOAC (1990) Official method of analysis. Association of official analytical chemists (No. 934.06), Arlington, VA

  21. Diamante LM, Munro PA (1993) Mathematical modeling of the thin layer solar drying of sweet potato slices. Sol Energy 51:271–276

    Article  Google Scholar 

  22. Menges HO, Ertekin C (2006) Mathematical modeling of thin layer drying of golden apples. J Food Eng 77:119–125

    Article  Google Scholar 

  23. Tabatabaee R, Jayas DS, White NDG (2004) Thin-layer drying and rewetting characteristics of buckwheat. Can Biosyst Eng 46:19–24

    Google Scholar 

  24. Tulek Y (2011) Drying kinetics of oyster mushroom (Pleurotus ostreatus) in a convective hot air dryer. J Agric Sci Technol 13:655–664

    Google Scholar 

  25. Ozdemir M, Devres YO (1999) The thin layer drying characteristics of hazelnuts during roasting. J Food Eng 42:225–233

    Article  Google Scholar 

  26. Doymaz I (2004) Drying kinetics of white mulberry. J Food Eng 61:341–346

    Article  Google Scholar 

  27. Togrul IT, Pehlivan D (2004) Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. J Food Eng 65:413–425

    Article  Google Scholar 

  28. Wang N, Brennan JG (1992) Effect of water binding on the drying behavior of potato. In: Mujumdar AS (ed) Drying, vol 92. Elsevier Science Publishers B. V, London, pp 1350–1359

    Google Scholar 

  29. Saravacos GD, Charm SE (1962) Effect of surface-active agents on the dehydration of fruits and vegetables. Food Technol 16:91–93

    Google Scholar 

  30. Saravacos GD, Maroulis ZB (2001) Transport properties of foods. Marcel Dekker Inc, New York

    Google Scholar 

  31. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, London, U.K

    Google Scholar 

  32. Lomauro CJ, Bakshi AS, Labuza TP (1985) Moisture transfer properties of dry and semimoist foods. J Food Sci 50:397–400

    Article  Google Scholar 

  33. Akpinar EK (2006) Mathematical modelling of thin layer drying process under open sun of some aromatic plants. J Food Eng 77:864–870

    Article  Google Scholar 

  34. San JN, Lozano M, Garcia PP, Mulet A (2003) Dehydration kinetics of red pepper (Capsicum annuum L var Jaranda). J Sci Food Agric 83:697–701

    Article  Google Scholar 

  35. Fang S, Wang Z, Hu X (2009) Hot air drying of whole fruit Chinese jujube (Zizyphus jujube Miller) thin layer mathematical modeling. Int J Food Sci Technol 44:1818–1824

    Article  Google Scholar 

  36. Kaymak-Ertekin F (2002) Drying and rehydrating kinetics of green and red peppers. J Food Sci 67:168–175

    Article  Google Scholar 

  37. Erenturk S, Gulaboglu MS, Gultekin S (2004) The thin-layer drying characteristics of rosehip. Biosyst Eng 89:159–166

    Article  Google Scholar 

  38. Krokida MK, Karathanos VT, Maroulis ZB, Marinos-Kouris D (2003) Drying kinetics of some vegetables. J Food Eng 59:391–403

    Article  Google Scholar 

  39. Kaur D, Wani AA, Sogi DS, Shivhare US (2006) Sorption isotherms and drying characteristics of tomato peel isolated from tomato pomace. Drying Technol 24:1515–1520

    Article  Google Scholar 

  40. Chawla C, Kaur D, Oberoi DPS, Sogi DS (2008) Drying characteristics, sorption isotherms, and lycopene retention of tomato pulp. Drying Technol 26:1257–1264

    Article  Google Scholar 

  41. Bruce DM (1985) Exposed-layer barley drying, three models fitted to new data up to 150°C. J Agric Eng Res 32:337–347

    Article  Google Scholar 

  42. Yaldiz O, Ertekin C, Uzun HI (2001) Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26:457–465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Tulek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demiray, E., Tulek, Y. Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat Mass Transfer 50, 779–786 (2014). https://doi.org/10.1007/s00231-013-1286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1286-9

Keywords

Navigation