Skip to main content

Advertisement

Log in

Role of p38 inhibition in cardiac ischemia/reperfusion injury

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

The p38 mitogen-activated protein kinases (p38s) are Ser/Thr kinases that are activated as a result of cellular stresses and various pathological conditions, including myocardial ischemia/reperfusion. p38 activation has been shown to accentuate myocardial injury and impair cardiac function. Inhibition of p38 activation and its activity has been proposed to be cardioprotective by slowing the rate of myocardial damage and improving cardiac function. The growing body of evidence on the use of p38 inhibitors as therapeutic means for responding to heart problems is controversial, since both beneficial as well as a lack of protective effects on the heart have been reported. In this review, the outcomes from studies investigating the effect of p38 inhibitors on the heart in a wide range of study models, including in vitro, ex vivo, and in vivo models, are discussed. The correlations of experimental models with practical clinical usefulness, as well as the need for future studies regarding the use of p38 inhibitors, are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization (2008) World Heath Statistics 2008. World Health Organization, Geneva

  2. Jennings RB, Reimer KA (1991) The cell biology of acute myocardial ischemia. Annu Rev Med 42:225–246. doi:10.1146/annurev.me.42.020191.001301

    Article  PubMed  CAS  Google Scholar 

  3. Braunwald E (1998) Evolution of the management of acute myocardial infarction: a 20th century saga. Lancet 352(9142):1771–1774. doi:10.1016/s0140-6736(98)03212-7

    Article  PubMed  CAS  Google Scholar 

  4. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94(4):1621–1628. doi:10.1172/JCI117504

    Article  PubMed  CAS  Google Scholar 

  5. Schulz R (2005) A new paradigm: cross talk of protein kinases during reperfusion saves life! Am J Physiol Heart Circ Physiol 288(1):H1–H2. doi:10.1152/ajpheart.00886.2004

    Article  PubMed  Google Scholar 

  6. Clark JE, Sarafraz N, Marber MS (2007) Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease. Pharmacol Therapeutics 116(2):192–206

    Article  CAS  Google Scholar 

  7. U.S. National Institutes of Health (2011) A study to evaluate the effects of 3 months dosing with GW856553, as assessed FDG-PET/CT imaging. Available at: http://clinicaltrials.gov/ct2/show/study/NCT00633022. Accessed 26 Sept 2011

  8. U.S. National Institutes of Health (2011) Efficacy study of p38 kinase inhibitor to treat patients with atherosclerosis. Available at:http://clinicaltrials.gov/ct2/show/NCT00570752?term=NCT00570752&rank=1. Accessed 26 Sept 2011

  9. U.S. National Institutes of Health (2011) A pharmacokinetic study of SB-681323 in subjects with coronary heart disease undergoing percutaneous intervention. Available at: http://clinicaltrials.gov/ct2/show/NCT00291902?term=SB-681323&rank=9. Accessed 26 Sept 2011

  10. Sarov-Blat L, Morgan JM, Fernandez P, James R, Fang Z, Hurle MR, Baidoo C, Willette RN, Lepore JJ, Jensen SE, Sprecher DL (2010) Inhibition of p38 mitogen-activated protein kinase reduces inflammation after coronary vascular injury in humans. Arterioscler Thromb Vac Biol 30(11):2256–2263. doi:10.1161/atvbaha.110.209205

    Article  CAS  Google Scholar 

  11. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Keys JR, Land Vatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372(6508):739–746

    Article  PubMed  CAS  Google Scholar 

  12. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78(6):1027–1037. doi:10.1016/0092-8674(94)90277-1

    Article  PubMed  CAS  Google Scholar 

  13. Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265(5173):808–811

    Article  PubMed  CAS  Google Scholar 

  14. Han J, Richter B, Li Z, Kravchenko VV, Ulevitch RJ (1995) Molecular cloning of human p38 MAP kinase. Biochim Biophys Acta 1265(2–3):224–227. doi:10.1016/0167-4889(95)00002-a

    Article  PubMed  Google Scholar 

  15. Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9(8):576–596

    PubMed  CAS  Google Scholar 

  16. Derijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ, Davis RJ (1995) Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267(5198):682–685

    Article  PubMed  CAS  Google Scholar 

  17. Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ (1996) MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16(3):1247–1255

    PubMed  CAS  Google Scholar 

  18. Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ (2003) Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17(16):1969–1978. doi:10.1101/gad.1107303

    Article  PubMed  CAS  Google Scholar 

  19. Kumar S, Jiang MS, Adams JL, Lee JC (1999) Pyridinylimidazole compound SB 203580 inhibits the activity but not the activation of p38 mitogen-activated protein kinase. Biochem Biophys Res Commun 263(3):825–831. doi:10.1006/bbrc.1999.1454

    Article  PubMed  CAS  Google Scholar 

  20. Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL (2000) Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 47(2–3):185–201. doi:10.1016/s0162-3109(00)00206-x

    Article  PubMed  CAS  Google Scholar 

  21. Yada M, Shimamoto A, Hampton CR, Chong AJ, Takayama H, Rothnie CL, Spring DJ, Shimpo H, Yada I, Pohlman TH, Verrier ED (2004) FR167653 diminishes infarct size in a murine model of myocardial ischemia-reperfusion injury. J Thorac Cardiovasc Surg 128(4):588–594. doi:10.1016/j.jtcvs.2004.02.007

    Article  PubMed  CAS  Google Scholar 

  22. Cheung PC, Campbell DG, Nebreda AR, Cohen P (2003) Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha. EMBO J 22(21):5793–5805. doi:10.1093/emboj/cdg552

    Article  PubMed  CAS  Google Scholar 

  23. Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ, Luo Y, Han J (2002) MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science 295(5558):1291–1294. doi:10.1126/science.1067289

    Article  PubMed  CAS  Google Scholar 

  24. Kumphune S, Bassi R, Jacquet S, Sicard P, Clark JE, Verma S, Avkiran M, O'Keefe SJ, Marber MS (2010) A chemical genetic approach reveals that p38alpha MAPK activation by diphosphorylation aggravates myocardial infarction and is prevented by the direct binding of SB203580. J Biol Chem 285(5):2968–2975. doi:10.1074/jbc.M109.079228

    Article  PubMed  CAS  Google Scholar 

  25. Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12(1):1–13

    Article  PubMed  CAS  Google Scholar 

  26. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem 271(30):17920–17926

    Article  PubMed  CAS  Google Scholar 

  27. Eyers PA, Craxton M, Morrice N, Cohen P, Goedert M (1998) Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chem Biol 5(6):321–328

    Article  PubMed  CAS  Google Scholar 

  28. Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR (1997) Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 235(3):533–538. doi:10.1006/bbrc.1997.6849

    Article  PubMed  CAS  Google Scholar 

  29. See F, Kompa A, Krum H (2004) p38 MAP kinase as a therapeutic target in cardiovascular disease. Drug Discovery Today 1(2):149–154. doi:10.1016/j.ddstr.2004.08.024

    CAS  Google Scholar 

  30. Young PR, McLaughlin MM, Kumar S, Kassis S, Doyle ML, McNulty D, Gallagher TF, Fisher S, McDonnell PC, Carr SA, Huddleston MJ, Seibel G, Porter TG, Livi GP, Adams JL, Lee JC (1997) Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J Biol Chem 272(18):12116–12121

    Article  PubMed  CAS  Google Scholar 

  31. Kaiser RA, Bueno OF, Lips DJ, Doevendans PA, Jones F, Kimball TF, Molkentin JD (2004) Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo. J Biol Chem 279(15):15524–15530. doi:10.1074/jbc.M313717200

    Article  PubMed  CAS  Google Scholar 

  32. Kaiser RA, Lyons JM, Duffy JY, Wagner CJ, McLean KM, O'Neill TP, Pearl JM, Molkentin JD (2005) Inhibition of p38 reduces myocardial infarction injury in the mouse but not pig after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 289(6):H2747–H2751. doi:10.1152/ajpheart.01280.2004

    Article  PubMed  CAS  Google Scholar 

  33. See F, Thomas W, Way K, Tzanidis A, Kompa A, Lewis D, Itescu S, Krum H (2004) p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J Am Coll Cardiol 44(8):1679–1689. doi:10.1016/j.jacc.2004.07.038

    Article  PubMed  CAS  Google Scholar 

  34. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH (1996) Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79(2):162–173

    PubMed  CAS  Google Scholar 

  35. Saurin AT, Martin JL, Heads RJ, Foley C, Mockridge JW, Wright MJ, Wang Y, Marber MS (2000) The role of differential activation of p38-mitogen-activated protein kinase in preconditioned ventricular myocytes. FASEB J 14(14):2237–2246. doi:10.1096/fj.99-0671com

    Article  PubMed  CAS  Google Scholar 

  36. Martin JL, Avkiran M, Quinlan RA, Cohen P, Marber MS (2001) Antiischemic effects of SB203580 are mediated through the inhibition of p38alpha mitogen-activated protein kinase: Evidence from ectopic expression of an inhibition-resistant kinase. Circ Res 89(9):750–752

    Article  PubMed  CAS  Google Scholar 

  37. Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, Chien KR (1998) Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273(4):2161–2168

    Article  PubMed  CAS  Google Scholar 

  38. Gysembergh A, Simkhovich BZ, Kloner RA, Przyklenk K (2001) p38 MAPK activity is not increased early during sustained coronary artery occlusion in preconditioned versus control rabbit heart. J Mol Cell Cardiol 33(4):681–690. doi:10.1006/jmcc.2000.1331

    Article  PubMed  CAS  Google Scholar 

  39. House SL, Branch K, Newman G, Doetschman T, Schultz Jel J (2005) Cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2 is mediated by the MAPK cascade. Am J Physiol Heart Circ Physiol 289(5):H2167–H2175. doi:10.1152/ajpheart.00392.2005

    Article  PubMed  CAS  Google Scholar 

  40. Khan M, Varadharaj S, Ganesan LP, Shobha JC, Naidu MU, Parinandi NL, Tridandapani S, Kutala VK, Kuppusamy P (2006) C-phycocyanin protects against ischemia-reperfusion injury of heart through involvement of p38 MAPK and ERK signaling. Am J Physiol Heart Circ Physiol 290(5):H2136–H2145. doi:10.1152/ajpheart.01072.2005

    Article  PubMed  CAS  Google Scholar 

  41. Schneider S, Chen W, Hou J, Steenbergen C, Murphy E (2001) Inhibition of p38 MAPK alpha/beta reduces ischemic injury and does not block protective effects of preconditioning. Am J Physiol Heart Circ Physiol 280(2):H499–H508

    PubMed  CAS  Google Scholar 

  42. Sumida T, Otani H, Kyoi S, Okada T, Fujiwara H, Nakao Y, Kido M, Imamura H (2005) Temporary blockade of contractility during reperfusion elicits a cardioprotective effect of the p38 MAP kinase inhibitor SB-203580. Am J Physiol Heart Circ Physiol 288(6):H2726–H2734. doi:10.1152/ajpheart.01183.2004

    Article  PubMed  CAS  Google Scholar 

  43. Tanno M, Bassi R, Gorog DA, Saurin AT, Jiang J, Heads RJ, Martin JL, Davis RJ, Flavell RA, Marber MS (2003) Diverse mechanisms of myocardial p38 mitogen-activated protein kinase activation: evidence for MKK-independent activation by a TAB1-associated mechanism contributing to injury during myocardial ischemia. Circ Res 93(3):254–261. doi:10.1161/01.res.0000083490.43943.85

    Article  PubMed  CAS  Google Scholar 

  44. Aleshin A, Sawa Y, Ono M, Funatsu T, Miyagawa S, Matsuda H (2004) Myocardial protective effect of FR167653; a novel cytokine inhibitor in ischemic-reperfused rat heart. Eur J Cardiothorac Surg 26(5):974–980. doi:10.1016/j.ejcts.2004.06.021

    Article  PubMed  Google Scholar 

  45. Clanachan AS, Jaswal JS, Gandhi M, Bottorff DA, Coughlin J, Finegan BA, Stone JC (2003) Effects of inhibition of myocardial extracellular-responsive kinase and P38 mitogen-activated protein kinase on mechanical function of rat hearts after prolonged hypothermic ischemia. Transplantation 75(2):173–180. doi:10.1097/01.tp.0000040429.40245.3a

    Article  PubMed  CAS  Google Scholar 

  46. Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA, Wang C, Lee JC, Feuerstein GZ, Yue TL (1999) Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99(13):1685–1691

    PubMed  CAS  Google Scholar 

  47. Meldrum DR, Dinarello CA, Cleveland JC Jr, Cain BS, Shames BD, Meng X, Harken AH (1998) Hydrogen peroxide induces tumor necrosis factor alpha-mediated cardiac injury by a P38 mitogen-activated protein kinase-dependent mechanism. Surgery 124(2):291–296, discussion 297

    Article  PubMed  CAS  Google Scholar 

  48. Wang M, Tsai BM, Turrentine MW, Mahomed Y, Brown JW, Meldrum DR (2005) p38 mitogen activated protein kinase mediates both death signaling and functional depression in the heart. Ann Thorac Surg 80(6):2235–2241. doi:10.1016/j.athoracsur.2005.05.070

    Article  PubMed  Google Scholar 

  49. Mocanu MM, Baxter GF, Yue Y, Critz SD, Yellon DM (2000) The p38 MAPK inhibitor, SB203580, abrogates ischaemic preconditioning in rat heart but timing of administration is critical. Basic Res Cardiol 95(6):472–478

    Article  PubMed  CAS  Google Scholar 

  50. Nagarkatti DS, Sha'afi RI (1998) Role of p38 MAP kinase in myocardial stress. J Mol Cell Cardiol 30(8):1651–1664

    Article  PubMed  CAS  Google Scholar 

  51. Nakano A, Cohen MV, Critz S, Downey JM (2000) SB 203580, an inhibitor of p38 MAPK, abolishes infarct-limiting effect of ischemic preconditioning in isolated rabbit hearts. Basic Res Cardiol 95(6):466–471

    Article  PubMed  CAS  Google Scholar 

  52. Sanada S, Kitakaze M, Papst PJ, Hatanaka K, Asanuma H, Aki T, Shinozaki Y, Ogita H, Node K, Takashima S, Asakura M, Yamada J, Fukushima T, Ogai A, Kuzuya T, Mori H, Terada N, Yoshida K, Hori M (2001) Role of phasic dynamism of p38 mitogen-activated protein kinase activation in ischemic preconditioning of the canine heart. Circ Res 88(2):175–180

    PubMed  CAS  Google Scholar 

  53. Weinbrenner C, Liu GS, Cohen MV, Downey JM (1997) Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart. J Mol Cell Cardiol 29(9):2383–2391. doi:10.1006/jmcc.1997.0473

    Article  PubMed  CAS  Google Scholar 

  54. Brady NR, Hamacher-Brady A, Gottlieb RA (2006) Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochim Biophys Acta 1757(5–6):667–678. doi:10.1016/j.bbabio.2006.04.011

    PubMed  CAS  Google Scholar 

  55. Colston JT, de la Rosa SD, Freeman GL (2004) Impact of brief oxidant stress on primary adult cardiac fibroblasts. Biochem Biophys Res Commun 316(1):256–262. doi:10.1016/j.bbrc.2004.02.042

    Article  PubMed  CAS  Google Scholar 

  56. Cooper M, Ytrehus K (2004) Cell survival signalling in heart derived myofibroblasts induced by preconditioning and bradykinin: the role of p38 MAP kinase. Mol Cell Biochem 259(1–2):83–90

    Article  PubMed  CAS  Google Scholar 

  57. Kim JK, Pedram A, Razandi M, Levin ER (2006) Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem 281(10):6760–6767. doi:10.1074/jbc.M511024200

    Article  PubMed  CAS  Google Scholar 

  58. Mackay K, Mochly-Rosen D (1999) An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia. J Biol Chem 274(10):6272–6279

    Article  PubMed  CAS  Google Scholar 

  59. Marais E, Genade S, Huisamen B, Strijdom JG, Moolman JA, Lochner A (2001) Activation of p38 MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated with attenuated p38 MAPK activity during sustained ischaemia and reperfusion. J Mol Cell Cardiol 33(4):769–778. doi:10.1006/jmcc.2001.1347

    Article  PubMed  CAS  Google Scholar 

  60. Okada T, Otani H, Wu Y, Kyoi S, Enoki C, Fujiwara H, Sumida T, Hattori R, Imamura H (2005) Role of F-actin organization in p38 MAP kinase-mediated apoptosis and necrosis in neonatal rat cardiomyocytes subjected to simulated ischemia and reoxygenation. Am J Physiol Heart Circ Physiol 289(6):H2310–H2318. doi:10.1152/ajpheart.00462.2005

    Article  PubMed  CAS  Google Scholar 

  61. Rakhit RD, Kabir AN, Mockridge JW, Saurin A, Marber MS (2001) Role of G proteins and modulation of p38 MAPK activation in the protection by nitric oxide against ischemia-reoxygenation injury. Biochem Biophys Res Commun 286(5):995–1002. doi:10.1006/bbrc.2001.5477

    Article  PubMed  CAS  Google Scholar 

  62. Sharov VG, Todor A, Suzuki G, Morita H, Tanhehco EJ, Sabbah HN (2003) Hypoxia, angiotensin-II, and norepinephrine mediated apoptosis is stimulus specific in canine failed cardiomyocytes: a role for p38 MAPK, Fas-L and cyclin D1. Eur J Heart Fail 5(2):121–129

    Article  PubMed  CAS  Google Scholar 

  63. Sucher R, Gehwolf P, Kaier T, Hermann M, Maglione M, Oberhuber R, Ratschiller T, Kuznetsov AV, Bosch F, Kozlov AV, Ashraf MI, Schneeberger S, Brandacher G, Ollinger R, Margreiter R, Troppmair J (2009) Intracellular signaling pathways control mitochondrial events associated with the development of ischemia/ reperfusion-associated damage. Transpl Int 22(9):922–930. doi:10.1111/j.1432-2277.2009.00883.x

    Article  PubMed  CAS  Google Scholar 

  64. Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G (2001) Signal transduction of ischemic preconditioning. Cardiovasc Res 52(2):181–198

    Article  PubMed  CAS  Google Scholar 

  65. Gorog DA, Tanno M, Cao X, Bellahcene M, Bassi R, Kabir AM, Dighe K, Quinlan RA, Marber MS (2004) Inhibition of p38 MAPK activity fails to attenuate contractile dysfunction in a mouse model of low-flow ischemia. Cardiovasc Res 61(1):123–131

    Article  PubMed  CAS  Google Scholar 

  66. Kabir AM, Cao X, Gorog DA, Tanno M, Bassi R, Bellahcene M, Quinlan RA, Davis RJ, Flavell RA, Shattock MJ, Marber MS (2005) Antimycin A induced cardioprotection is dependent on pre-ischemic p38-MAPK activation but independent of MKK3. J Mol Cell Cardiol 39(4):709–717. doi:10.1016/j.yjmcc.2005.07.012

    Article  PubMed  CAS  Google Scholar 

  67. Moolman JA, Hartley S, Van Wyk J, Marais E, Lochner A (2006) Inhibition of myocardial apoptosis by ischaemic and beta-adrenergic preconditioning is dependent on p38 MAPK. Cardiovasc Drugs Ther 20(1):13–25. doi:10.1007/s10557-006-6257-7

    Article  PubMed  CAS  Google Scholar 

  68. Gao F, Yue TL, Shi DW, Christopher TA, Lopez BL, Ohlstein EH, Barone FC, Ma XL (2002) p38 MAPK inhibition reduces myocardial reperfusion injury via inhibition of endothelial adhesion molecule expression and blockade of PMN accumulation. Cardiovasc Res 53(2):414–422

    Article  PubMed  CAS  Google Scholar 

  69. Zhang GM, Su SP, Wang Y, Li TD, Li XY, Tan H, Zhang DW, Zhang H, Liu LF (2010) Effect of ischemic postconditioning on activation of p38 mitogen activated protein kinase and cardiocyte apoptosis in rats. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 32(5):526–532. doi:10.3881/j.issn.1000-503X.2010.05.012

    PubMed  CAS  Google Scholar 

  70. Kompa AR, See F, Lewis DA, Adrahtas A, Cantwell DM, Wang BH, Krum H (2008) Long-term but not short-term p38 mitogen-activated protein kinase inhibition improves cardiac function and reduces cardiac remodeling post-myocardial infarction. J Pharmacol Exp Ther 325(3):741–750. doi:10.1124/jpet.107.133546

    Article  PubMed  CAS  Google Scholar 

  71. Li M, Georgakopoulos D, Lu G, Hester L, Kass DA, Hasday J, Wang Y (2005) p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation 111(19):2494–2502. doi:10.1161/01.cir.0000165117.71483.0c

    Article  PubMed  CAS  Google Scholar 

  72. Liu YH, Wang D, Rhaleb NE, Yang XP, Xu J, Sankey SS, Rudolph AE, Carretero OA (2005) Inhibition of p38 mitogen-activated protein kinase protects the heart against cardiac remodeling in mice with heart failure resulting from myocardial infarction. J Card Fail 11(1):74–81

    Article  PubMed  CAS  Google Scholar 

  73. Sy JC, Seshadri G, Yang SC, Brown M, Oh T, Dikalov S, Murthy N, Davis ME (2008) Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nat Mater 7(11):863–868. doi:10.1038/nmat2299

    Article  PubMed  CAS  Google Scholar 

  74. Yin H, Zhang J, Lin H, Wang R, Qiao Y, Wang B, Liu F (2008) p38 mitogen-activated protein kinase inhibition decreases TNFalpha secretion and protects against left ventricular remodeling in rats with myocardial ischemia. Inflammation 31(2):65–73. doi:10.1007/s10753-007-9050-2

    Article  PubMed  CAS  Google Scholar 

  75. Schulz R, Belosjorow S, Gres P, Jansen J, Michel MC, Heusch G (2002) p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovasc Res 55(3):690–700

    Article  PubMed  CAS  Google Scholar 

  76. Barancik M, Htun P, Strohm C, Kilian S, Schaper W (2000) Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death. J Cardiovasc Pharmacol 35(3):474–483

    Article  PubMed  CAS  Google Scholar 

  77. Engel FB, Hsieh PC, Lee RT, Keating MT (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103(42):15546–15551. doi:10.1073/pnas.0607382103

    Article  PubMed  CAS  Google Scholar 

  78. Di Diego JM, Antzelevitch C (2011) Ischemic ventricular arrhythmias: Experimental models and their clinical relevance. Heart Rhythm 8:1963–1968. doi:10.1016/j.hrthm.2011.06.036

    Google Scholar 

  79. Chen Z, Luo H, Zhuang M, Cai L, Su C, Lei Y, Zou J (2011) Effects of ischemic preconditioning on ischemia/reperfusion-induced arrhythmias by upregulatation of connexin 43 expression. J Cardiothorac Surg 6:80. doi:10.1186/1749-8090-6-80

    Article  PubMed  Google Scholar 

  80. Marber MS, Molkentin JD, Force T (2010) Developing small molecules to inhibit kinases unkind to the heart: p38 MAPK as a case in point. Drug Discov Today Dis Mech 7(2):e123–e127. doi:10.1016/j.ddmec.2010.07.006

    Article  PubMed  Google Scholar 

  81. Sweeney SE (2009) The as-yet unfulfilled promise of p38 MAPK inhibitors. Nat Rev Rheumatol 5(9):475–477. doi:10.1038/nrrheum.2009.171

    Article  PubMed  CAS  Google Scholar 

  82. U.S. National Institutes of Health (2011) A study to evaluate the safety of 12 weeks of dosing with GW856553 and its effects on inflammatory markers, infarct size, and cardiac function in subjects with myocardial infarction without ST-segment elevation (Solstice). Available at: http://clinicaltrials.gov/ct2/show/study/NCT00910962?term=GW856553&rank=6. Accessed 26 Sept 2011

  83. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH (2000) Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86(6):692–699

    PubMed  CAS  Google Scholar 

  84. Mackay K, Mochly-Rosen D (2000) Involvement of a p38 mitogen-activated protein kinase phosphatase in protecting neonatal rat cardiac myocytes from ischemia. J Mol Cell Cardiol 32(8):1585–1588. doi:10.1006/jmcc.2000.1194

    Article  PubMed  CAS  Google Scholar 

  85. Sicard P, Clark JE, Jacquet S, Mohammadi S, Arthur JS, O'Keefe SJ, Marber MS (2010) The activation of p38 alpha, and not p38 beta, mitogen-activated protein kinase is required for ischemic preconditioning. J Mol Cell Cardiol 48(6):1324–1328. doi:10.1016/j.yjmcc.2010.02.013

    Article  PubMed  CAS  Google Scholar 

  86. Schwertz H, Carter JM, Abdudureheman M, Russ M, Buerke U, Schlitt A, Muller-Werdan U, Prondzinsky R, Werdan K, Buerke M (2007) Myocardial ischemia/reperfusion causes VDAC phosphorylation which is reduced by cardioprotection with a p38 MAP kinase inhibitor. Proteomics 7(24):4579–4588. doi:10.1002/pmic.200700734

    Article  PubMed  CAS  Google Scholar 

  87. Koike N, Takeyoshi I, Ohki S, Tokumine M, Matsumoto K, Morishita Y (2004) Effects of adding P38 mitogen-activated protein-kinase inhibitor to celsior solution in canine heart transplantation from non-heart-beating donors. Transplantation 77(2):286–292. doi:10.1097/01.TP.0000101039.12835.A4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Thailand Research Fund grants MRG5480017 (SK), BRG5480003 (SC), and RTA5280006 (NC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nipon Chattipakorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumphune, S., Chattipakorn, S. & Chattipakorn, N. Role of p38 inhibition in cardiac ischemia/reperfusion injury. Eur J Clin Pharmacol 68, 513–524 (2012). https://doi.org/10.1007/s00228-011-1193-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1193-2

Keywords

Navigation