Skip to main content

Advertisement

Log in

Interethnic differences of PEPT2 (SLC15A2) polymorphism distribution and associations with cephalexin pharmacokinetics in healthy Asian subjects

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objectives

The aims of this study were to characterize the population frequency of PEPT2 (SLC15A2) polymorphic variants in three Asian ethnic populations, namely Chinese, Malay and Asian Indian, and to investigate the associations of ethnicity (Chinese vs. Asian Indian), PEPT2 haplotype and cephalexin pharmacokinetics in healthy Asian subjects.

Methods

PEPT2 polymorphisms were screened from a cohort of 96 Chinese, 96 Malay and 96 Asian Indian subjects. Cephalexin (1000 mg, orally) pharmacokinetics was characterized in an additional 15 Chinese and 15 Asian Indian healthy subjects. These 30 subjects were subsequently genotyped for their PEPT2 polymorphisms.

Results

In total, ten common single nucleotide polymorphisms (SNPs) were detected in the three populations, forming two PEPT2 haplotypes. There were significant ethnic differences in PEPT2 haplotype distribution: the frequencies of the *1 and *2 alleles were 0.307 and 0.693 in the Chinese population, 0.495 and 0.505 in the Malay population and 0.729 and 0.271 in Asian Indian population, respectively. The C max of cephalexin was significantly lower in the Chinese (29.80 ± 4.09 μg ml−1) population than in the Asian Indian one (33.29 ± 4.97 μg ml−1; P = 0.045). This difference could be explained by the higher average body weight of the Chinese population. There was no other significant difference in cephalexin pharmacokinetics between either ethnic or PEPT2 genotype groups.

Conclusion

PEPT2 polymorphism distributions differ significantly between Chinese, Malay and Asian Indian populations. However, cephalexin pharmacokinetics is not meaningfully different between Chinese and Asian Indians. The association between the PEPT2 haplotype and cephalexin pharmacokinetics could not be confirmed, and future studies under better controlled conditions are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takahashi K, Nakamura N, Terada T, Okano T, Futami T, Saito H, Inui KI (1998) Interaction of beta-lactam antibiotics with H+ /peptide cotransporters in rat renal brush-border membranes. J Pharmacol Exp Ther 286(2):1037–1042

    PubMed  CAS  Google Scholar 

  2. Smith DE, Pavlova A, Berger UV, Hediger MA, Yang T, Huang YG, Schnermann JB (1998) Tubular localization and tissue distribution of peptide transporters in rat kidney. Pharm Res 15(8):1244–1249

    Article  PubMed  CAS  Google Scholar 

  3. Shen H, Smith DE, Yang T, Huang YG, Schnermann JB, Brosius FC (1999) Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am J Physiol 276(5 Pt 2):F658–665

    PubMed  CAS  Google Scholar 

  4. Ganapathy ME, Huang W, Wang H, Ganapathy V, Leibach FH (1998) Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem Biophys Res Commun 246(2):470–475

    Article  PubMed  CAS  Google Scholar 

  5. Pinsonneault J, Nielsen CU, Sadée W (2004) Genetic variants of the human H+/dipeptide transporter PEPT2: analysis of haplotype functions. J Pharmacol Exp Ther 311(3):1088–1096

    Article  PubMed  CAS  Google Scholar 

  6. Bahadduri PM, D’Souza VM, Pinsonneault JK, Sadée W, Bao S, Knoell DL, Swaan PW (2005) Functional characterization of the peptide transporter PEPT2 in primary cultures of human upper airway epithelium. Am J Respir Cell Mol Biol 32(4):319–325

    Article  PubMed  CAS  Google Scholar 

  7. Maïza A, Daley-Yates PT (1993) Variability in the renal clearance of cephalexin in experimental renal failure. J Pharmacokinet Biopharm 21(1):19–30

    Article  PubMed  Google Scholar 

  8. Gustaferro CA, Steckelberg JM (1991) Cephalosporin antimicrobial agents and related compounds. Mayo Clin Proc 66(10):1064–73

    PubMed  CAS  Google Scholar 

  9. Terada T, Saito H, Mukai M, Inui K (1997) Recognition of beta-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Am J Physiol 273(5 Pt 2):F706–711

    PubMed  CAS  Google Scholar 

  10. Granero L, Gimeno MJ, Torres-Molina F, Chesa-Jiménez J, Peris JE (1994) Studies on the renal excretion mechanisms of cefadroxil. Drug Metab Dispos 22(3):447–450

    PubMed  Google Scholar 

  11. Padoin C, Tod M, Perret G, Petitjean O (1998) Analysis of the pharmacokinetic interaction between cephalexin and quinapril by a nonlinear mixed-effect model. Antimicrob Agents Chemother 42(6):1463–1469

    PubMed  CAS  Google Scholar 

  12. Luckner P, Brandsch M (2005) Interaction of 31 beta-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1. Eur J Pharm Biopharm 59(1):17–24

    Article  PubMed  CAS  Google Scholar 

  13. Hori R, Okumura K, Kamiya A, Nihira H, Nakano H (1983) Ampicillin and cephalexin in renal insufficiency. Clin Pharmacol Ther 34(6):792–798

    PubMed  CAS  Google Scholar 

  14. Kamiya A, Okumura K, Hori R (1983) Quantitative investigation on renal handling of drugs in rabbits, dogs, and humans. J Pharm Sci 72(4):440–443

    Article  PubMed  CAS  Google Scholar 

  15. Yin OQ, Tomlinson B, Chow MS (2006) Variability in renal clearance of substrates for renal transporters in Chinese subjects. J Clin Pharmacol 46(2):157–163

    Article  PubMed  CAS  Google Scholar 

  16. Pelloquin F, Lamelin JP, Lenoir GM (1986) Human B lymphocytes immortalization by Epstein-Barr virus in the presence of cyclosporin A. In Vitro Cell Dev Biol 22(12):689–694

    Article  PubMed  CAS  Google Scholar 

  17. Ying GW, Lee CG, Lee EJ (2004) A naturally occurring -263G/C variant of the human AA-NAT gene and overnight melatonin production. Mol Genet Metab 81(1):65–69

    Article  PubMed  CAS  Google Scholar 

  18. Kovach PM, Lantz RJ, Brier G (1991) High-performance liquid chromatographic determination of loracarbef, a potential metabolite, cefaclor and cephalexin in human plasma, serum and urine. J Chromatogr 567(1):129–139

    Article  PubMed  CAS  Google Scholar 

  19. Barbhaiya RH (1996) A pharmacokinetic comparison of cefadroxil and cephalexin after administration of 250, 500 and 1000 mg solution doses. Biopharm Drug Dispos 17(4):319–330

    Article  PubMed  CAS  Google Scholar 

  20. Brogard JM, Pinget M, Dorner M, Lavillaureix J (1975) Determination of cefalexin pharmacokinetics and dosage adjustments in relation to renal function. J Clin Pharmacol 15(10):666–673

    PubMed  CAS  Google Scholar 

  21. Actor P, Pitkin DH, Lucyszyn G, Weisbach JA, Bran JL (1976) Cefatrizine (SK&F 60771), a new oral cephalosporin: serum levels and urinary recovery in humans after oral or intramuscular administration–comparative study with cephalexin and cefazolin. Antimicrob Agents Chemother 9(5):800–803

    PubMed  CAS  Google Scholar 

  22. Pfeffer M, Jackson A, Ximenes J, de Menezes JP (1977) Comparative human oral clinical pharmacology of cefadroxil, cephalexin, and cephradine. Antimicrob Agents Chemother 11(2):331–338

    PubMed  CAS  Google Scholar 

  23. Korzeniowski OM, Scheld WM, Sande MA (1977) Comparative pharmacology of cefaclor and cephalexin. Antimicrob Agents Chemother 12(2):157–162

    PubMed  CAS  Google Scholar 

  24. Hartstein AI, Patrick KE, Jones SR, Miller MJ, Bryant RE (1977) Comparison of pharmacological and antimicrobial properties of cefadroxil and cephalexin. Antimicrob Agents Chemother 12(1):93–97

    PubMed  CAS  Google Scholar 

  25. Spyker DA, Thomas BL, Sande MA, Bolton WK (1978) Pharmacokinetics of cefaclor and cephalexin: dosage nomograms for impaired renal function. Antimicrob Agents Chemother 14(2):172–177

    PubMed  CAS  Google Scholar 

  26. Lode H, Stahlmann R, Koeppe P (1979) Comparative pharmacokinetics of cephalexin, cefaclor, cefadroxil, and CGP 9000. Antimicrob Agents Chemother 16(1):1–6

    PubMed  CAS  Google Scholar 

  27. Lecaillon JB, Hirtz JL, Schoeller JP, Humbert G, Vischer W (1980) Pharmacokinetic comparison of cefroxadin (CGP 9000) and cephalexin by simultaneous administration to humans. Antimicrob Agents Chemother 18(5):656–660

    PubMed  CAS  Google Scholar 

  28. Griffith RS, Black HR (1970) Cephalexin. Med Clin North Am 54(5):1229–1244

    PubMed  CAS  Google Scholar 

  29. Herrera-Ruiz D, Knipp GT (2003) Current perspectives on established and putative mammalian oligopeptide transporters. J Pharm Sci 92(4):691–714

    Article  PubMed  CAS  Google Scholar 

  30. Rubio-Aliaga I, Daniel H (2002) Mammalian peptide transporters as targets for drug delivery. Trends Pharmacol Sci 23(9):434–440

    Article  PubMed  CAS  Google Scholar 

  31. Dresser MJ, Leabman MK, Giacomini KM (2001) Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J Pharm Sci 90(4):397–421

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Medical Research Council, Singapore. (NMRC /1014/2005)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund Jon Deoon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Tang, A.M.Y., Tan, Y.L. et al. Interethnic differences of PEPT2 (SLC15A2) polymorphism distribution and associations with cephalexin pharmacokinetics in healthy Asian subjects. Eur J Clin Pharmacol 65, 65–70 (2009). https://doi.org/10.1007/s00228-008-0488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0488-4

Keywords

Navigation