Skip to main content
Log in

Year-round distribution suggests spatial segregation of Cory’s shearwaters, based on individual experience

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Recent studies have shown that pelagic seabirds with little breeding experience are wide ranging individuals exploring different foraging grounds and occupying generally more pelagic habitats than more experienced birds. This study compared the spatial dynamic of the year-round distribution and behaviour between two different population components: experienced (Exp; >2 years of successful breeding) and inexperienced (Inexp; ≤2 successful years) Cory’s shearwaters (Calonectris borealis) individuals from Berlenga Island, offshore the Portuguese coast. Our aim was to verify the occurrence of variations in the at-sea activity, foraging habitats and isotopic niches of Exp (N = 11) and Inexp (N = 11) individuals, during their breeding and non-breeding phases. Our results confirmed differences in the migratory routes and foraging grounds during the annual cycle between these two population components: Inexp birds exhibited a more pelagic behaviour than Exp birds, with extensive migratory routes, marked by several stopovers, and a higher number of non-breeding areas. Exp individuals migrated through shorter routes, and wintered in fewer locations. Exp individuals foraged on coastal, shallow and cold water areas and showed higher carbon and nitrogen isotopic values, while Inexp birds foraged more on pelagic, windy and frontal zones and exhibited lower carbon and nitrogen isotopic values. Our results suggest that experience plays a relevant role in explaining the spatial distribution and behaviour of pelagic seabirds such as Cory’s shearwaters. Future research with larger sample sizes should focus on comparing the behaviour of juvenile, immature, first-time breeders and breeders with increasing experience and age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afán I, Navarro J, Cardador L et al (2014) Foraging movements and habitat niche of two closely related seabirds breeding in sympatry. Mar Biol 161:657–668. doi:10.1007/s00227-013-2368-4

    Article  Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688. doi:10.1111/j.1365-2699.2006.01584.x

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4 classes. R package version 10-4. https://cran.r-project.org/web/packages/lme4/lme4.pdf

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. doi:10.1016/j.ecolmodel.2006.03.017

    Article  Google Scholar 

  • Catry P, Dias MP, Phillips RA, Granadeiro JP (2011) different means to the same end: long-distance migrant seabirds from two colonies differ in behaviour, despite common wintering grounds. PLoS One 6:e26079. doi:10.1371/journal.pone.0026079

    Article  CAS  Google Scholar 

  • Catry P, Dias MP, Phillips RA, Granadeiro JP (2013) Carry-over effects from breeding modulate the annual cycle of a long-distance migrant: an experimental demonstration. Ecology 94:1230–1235

    Article  Google Scholar 

  • Dias MP, Granadeiro JP, Phillips RA et al (2011) Breaking the routine: individual Cory’s shearwaters shift winter destinations between hemispheres and across ocean basins. Proc R Soc B Biol Sci 278:1786–1793. doi:10.1098/rspb.2010.2114

    Article  Google Scholar 

  • Edrén SMC, Wisz MS, Teilmann J et al (2010) Modelling spatial patterns in harbour porpoise satellite telemetry data using maximum entropy. Ecography 33:698–708. doi:10.1111/j.1600-0587.2009.05901.x

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Forslund P, Pärt T (1995) Age and reproduction in birds—hypotheses and tests. Trends Ecol Evol 10:374–378. doi:10.1016/S0169-5347(00)89141-7

    Article  CAS  Google Scholar 

  • Froy H, Lewis S, Catry P et al (2015) Age-related variation in foraging behaviour in the wandering albatross at South Georgia: no evidence for senescence. PLoS One. doi:10.1371/journal.pone.0116415

    Google Scholar 

  • Gonzalez-Solis J, Croxall JP, Oro D, Ruiz X (2007) Trans-equatorial migration and mixing in the wintering areas of a pelagic seabird. Front Ecol Environ 5:297–301. doi:10.1890/1540-9295(2007)5[297:TMAMIT]2.0.CO;2

    Article  Google Scholar 

  • González-Solís J, Felicísimo ÁM, Fox JW et al (2009) Influence of sea surface winds on shearwater migration detours. Mar Ecol Prog Ser 391:221–230. doi:10.3354/meps08128

    Article  Google Scholar 

  • Grémillet D, Lewis S, Drapeau L (2008) Spatial match–mismatch in the Benguela upwelling zone: should we expect chlorophyll and sea-surface temperature to predict marine predator distributions? J Appl Ecol. doi:10.1111/j.1365-2664.2007.01447.x

    Google Scholar 

  • Guisan A, Graham CH, Elith J (2007) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340. doi:10.1111/j.1472-4642.2007.00342.x

    Article  Google Scholar 

  • Haug FD, Paiva VH, Werner AC, Ramos JA (2015) Foraging by experienced and inexperienced Cory’s shearwater along a 3-year period of ameliorating foraging conditions. Mar Biol. doi:10.1007/s00227-015-2612-1

    Google Scholar 

  • Igual JM, Forero MG, Tavecchia G et al (2005) Short-term effects of data-loggers on Cory’s shearwater (Calonectris diomedea). Mar Biol 146:619–624. doi:10.1007/s00227-004-1461-0

    Article  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602. doi:10.1111/j.1365-2656.2011.01806.x

    Article  Google Scholar 

  • Jones MGW, Ryan PG (2014) Effects of pre-laying attendance and body condition on long-term reproductive success in Wandering Albatrosses. Emu 114:137–145. doi:10.1071/MU12054

    Google Scholar 

  • Kubetzki U, Garthe S, Fifield D et al (2009) Individual migratory schedules and wintering areas of northern gannets. Mar Ecol Prog Ser 391:257–265. doi:10.3354/meps08254

    Article  Google Scholar 

  • Lecoq M, Catry P, Granadeiro JP (2011) Population trends of Cory’s shearwaters Calonectris diomedea borealis breeding at Berlengas Islands, Portugal. Airo 20:36–41

    Google Scholar 

  • Le Vaillant M, Le Bohec C, Prud’Homme O et al (2013) How age and sex drive the foraging behaviour in the king penguin. Mar Biol 160:1147–1156. doi:10.1007/s00227-013-2167-y

    Article  Google Scholar 

  • Longhurst AR (2010) Ecological geography of the sea. Academic Press, San Diego

    Google Scholar 

  • Louzao M, Delord K, Garcia D et al (2012) Protecting persistent dynamic oceanographic features: transboundary conservation efforts are needed for the critically endangered balearic shearwater. PLoS One. doi:10.1371/journal.pone.0035728

    Google Scholar 

  • Mackley EK, Phillips RA, Silk J et al (2010) Free as a bird? Activity patterns of albatrosses during the nonbreeding period. Mar Ecol Prog Ser 406:291–303. doi:10.3354/meps08532

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of N-15 along food-chains—Further evidence and the relation between δ-N-15 and animal age. Geochim Cosmochim Acta 48:1135–1140. doi:10.1016/0016-7037(84)90204-7

    Article  CAS  Google Scholar 

  • Monaghan P, Charmantier A, Nussey DH, Ricklefs RE (2008) The evolutionary ecology of senescence. Funct Ecol 22:371–378. doi:10.1111/j.1365-2435.2008.01418.x

    Article  Google Scholar 

  • Mougin J-L, Jouanin C, Roux F (2000) Démographie du puffin cendré Calonectris diomedea de Selvagem Grande. Rev Ecol Terre Vie 55:275–290

    Google Scholar 

  • Navarro J, González-Solís J (2009) Environmental determinants of foraging strategies in Cory’s shearwaters Calonectris diomedea. Mar Ecol Prog Ser 378:259–267. doi:10.3354/meps07880

    Article  CAS  Google Scholar 

  • Navarro J, Coll M, Somes CJ, Olson RJ (2013) Trophic niche of squids Insights from isotopic data in marine systems worldwide. Deep Sea Res II. doi:10.1016/j.dsr2.2013.01.031

    Google Scholar 

  • Nevoux M, Weimerskirch H, Barbraud C (2007) Environmental variation and experience-related differences in the demography of the long-lived black-browed albatross. J Anim Ecol 76:159–167. doi:10.1111/j.1365-2656.2006.01191.x

    Article  Google Scholar 

  • Paiva VH, Geraldes P, Ramírez I et al (2010a) Oceanographic characteristics of areas used by Cory’s shearwaters during short and long foraging trips in the North Atlantic. Mar Biol 157:1385–1399. doi:10.1007/s00227-010-1417-5

    Article  Google Scholar 

  • Paiva VH, Geraldes P, Ramírez I et al (2010b) Foraging plasticity in a pelagic seabird species along a marine productivity gradient. Mar Ecol Prog Ser 398:259–274. doi:10.3354/meps08319

    Article  CAS  Google Scholar 

  • Pardo D, Barbraud C, Authier M, Weimerskirch H (2013) Evidence for an age-dependent influence of environmental variations on a long-lived seabird’s life-history traits. Ecology 94:208–220. doi:10.1890/12-0215.1

    Article  Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5:e9672. doi:10.1371/journal.pone.0009672

    Article  Google Scholar 

  • Peron C, Grémillet D (2013) Tracking through life stages: adult, immature and juvenile autumn migration in a long-lived seabird. PLoS One. doi:10.1371/journal.pone.0072713

    Google Scholar 

  • Phillips RA, Xavier JC, Croxall JP (2003) Effects of satellite transmitters on albatrosses and petrels. Auk 120:1082–1090. doi:10.1642/0004-8038(2003)120[1082:EOSTOA]2.0.CO;2

    Article  Google Scholar 

  • Phillips RA, Silk J, Croxall JP et al (2004) Accuracy of geolocation estimates for flying seabirds. Mar Ecol Prog Ser 266:265–272. doi:10.3354/meps266265

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Quillfeldt P, McGill R, Furness RW (2005) Diet and foraging areas of Southern Ocean seabirds and their prey inferred from stable isotopes: review and case study of Wilson’s storm-petrel. Mar Ecol Prog Ser 295:295–304. doi:10.3354/meps295295

    Article  CAS  Google Scholar 

  • Quillfeldt P, Masello JF, Navarro J, Phillips RA (2013) Year-round distribution suggests spatial segregation of two small petrel species in the South Atlantic. J Biogeogr 40:430–441. doi:10.1111/jbi.12008

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Ramírez I, Paiva VH, Menezes D et al (2013) Year-round distribution and habitat preferences of the Bugio petrel. Mar Ecol Prog Ser 476:269–284. doi:10.3354/meps10083

    Article  Google Scholar 

  • Ramos JA, Moniz Z, Sola E, Monteiro LR (2003) Reproductive measures and chick provisioning of Cory’s Shearwater Calonectris diomedea borealis in the Azores. Bird Study 50:47–54

    Article  Google Scholar 

  • Ramos R, Gonzalez-Solis J, Ruiz X (2009) Linking isotopic and migratory patterns in a pelagic seabird. Oecologia 160:97–105. doi:10.1007/s00442-008-1273-x

    Article  Google Scholar 

  • Riotte-Lambert L, Weimerskirch H (2013) Do naive juvenile seabirds forage differently from adults? Proc R Soc B. doi:10.1098/rspb.2013.1434

    Google Scholar 

  • Somes CJ, Schmittner A, Galbraith ED et al (2010) Simulating the global distribution of nitrogen isotopes in the ocean. Glob Biogeochem Cycles. doi:10.1029/2009GB003767

    Google Scholar 

  • Thiebot JB, Lescroel A, Pinaud D et al (2011) Larger foraging range but similar habitat selection in non-breeding versus breeding sub-Antarctic penguins. Antarct Sci 23:117–126. doi:10.1017/S0954102010000957

    Article  Google Scholar 

  • Verbruggen H, Tyberghein L, Belton GS et al (2013) Improving transferability of introduced species’ distribution models: new tools to forecast the spread of a highly invasive seaweed. PLoS One. doi:10.1371/journal.pone.0068337

    Google Scholar 

  • Votier SC, Grecian WJ, Patrick S, Newton J (2010) Inter-colony movements, at-sea behaviour and foraging in an immature seabird: results from GPS-PPT tracking, radio-tracking and stable isotope analysis. Mar Biol 158:355–362. doi:10.1007/s00227-010-1563-9

    Article  Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342. doi:10.1890/10-1171.1

    Article  Google Scholar 

  • Weimerskirch H, Gault A, Cherel Y (2005) Prey distribution and patchiness: factors in foraging success and efficiency of wandering albatrosses. Ecology 86:2611–2622. doi:10.1890/04-1866

    Article  Google Scholar 

  • Weimerskirch H, Cherel Y, Delord K et al (2014) Lifetime foraging patterns of the wandering albatross: life on the move! J Exp Mar Biol Ecol 450:68–78. doi:10.1016/j.jembe.2013.10.021

    Article  Google Scholar 

  • Zimmer I, Ropert-Coudert Y, Kato A et al (2011) Does Foraging Performance Change with Age in Female Little Penguins (Eudyptula minor)? PLoS One. doi:10.1371/journal.pone.0016098

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Instituto da Conservação da Natureza e Florestas (ICNF) for their logistical support (lodging), especially the wardens of the Reserva Natural das Berlengas, Paulo Crisóstomo and Eduardo Mourato, for their companionship. We also thank Filipe Ceia and Lucas Krüger for help during fieldwork. GLS devices were financed by the EU INTERREG project FAME: The Future of the Atlantic Marine Environment and by former projects from Centre d’Etudes Biologiques de Chizé. R.M. acknowledges the study grant given by the EMMC-EMAE consortium and the European Commission. V.H.P. acknowledges the postdoctoral grants given by Fundação para a Ciência e Tecnologia (FCT; SFRH/BPD/63825/2009 and SFRH/BPD/85024/2012). The experimental approach was conducted with permission from the Portuguese Government—‘Instituto de Conservação da Natureza e Florestas (ICNF)’—with permit No. 89/2011/CAPT. All methods used in this study comply with the Portuguese laws Nos. 140/99, 49/2005, 316/89 and 180/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor H. Paiva.

Additional information

Responsible Editor: S. Garthe.

Reviewed by undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Missagia, R.V., Ramos, J.A., Louzao, M. et al. Year-round distribution suggests spatial segregation of Cory’s shearwaters, based on individual experience. Mar Biol 162, 2279–2289 (2015). https://doi.org/10.1007/s00227-015-2762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2762-1

Keywords

Navigation