Skip to main content
Log in

DNA extraction from dry wood of Neobalanocarpus heimii (Dipterocarpaceae) for forensic DNA profiling and timber tracking

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Wood can be a good source of DNA for various applications in forensic forestry and timber trade if high-quality DNA can be retrieved from the dry wood. In order to provide a general guideline for DNA authenticity testing established for Neobalanocarpus heimii, this study was designed to evaluate the potential of extracting DNA from the dry wood. Overall, the efficacy of DNA extraction was higher for the cambium and sapwood than for the heartwood tissues. In terms of DNA extraction protocols, the Qiagen kit and CTAB with PTB protocol showed higher PCR amplification rates. In order to safeguard the intactness of the DNA, the DNA extraction from dry wood is recommended to be carried out within 6 weeks after felling for logs and 6 months after felling for stumps. The results also showed that the amplicon size might not account for the PCR amplification success rate, and chloroplast genome yielded higher amplification success rate compared with nuclear genome. However, only the chloroplast region can be perfectly retrieved from heat-treated lumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asia Forest Partnership (2005) Developing minimum standards of legality, timber tracking and chain of custody systems, verification systems among Asia Forest Partnership (AFP) partners. Work plan on legality, prepared by the Global Forestry Services (GFS) under the coordination of the Center for International Forestry Research (CIFOR)

  • Asif MJ, Cannon CH (2005) DNA extraction from processed wood: a case study for the identification of an endangered timber species (Gonystylus bancanus). Plant Mol Biol Rep 23:1–8

    Google Scholar 

  • Bär W, Kratzer A, Mächler M, Schmid W (1988) Postmortem instability of DNA. Forensic Sci Int 39:59–70

    Article  PubMed  Google Scholar 

  • Cano RJ (1996) Analysing ancient DNA. Endeavour 20:162–167

    Article  PubMed  CAS  Google Scholar 

  • Chua LSL (1998) Neobalanocarpus heimii. 2008 IUCN red list of threatened species. http://www.iucnredlist.org. Accessed 14 May 2009

  • Cotton EA, Allsop RF, Guest JL, Frazier RR, Koumi P, Callow IP, Seager A, Sparkes RL (2000) Validation of the AMPFlSTR SGM Plus system for use in forensic casework. Forensic Sci Int 112:151–161

    Article  PubMed  CAS  Google Scholar 

  • Crowley TM, Muralitharan MS, Stevenson TW (2003) Isolating conifer DNA: a superior polysaccharide elimination method. Plant Mol Biol Rep 21:97a–97d

    Google Scholar 

  • De Filippis L, Magel E (1998) Differences in genomic DNA extracted from bark and from wood of different zones in Robinia trees using RAPD-PCR. Trees 12:377–384

    Google Scholar 

  • Deguilloux MF, Pemonge MH, Petit RJ (2002) Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proc R Soc Lond B Biol 269:1039–1046

    Article  CAS  Google Scholar 

  • Deguilloux MF, Pemonge MH, Bertel L, Kremer A, Petit RJ (2003) Checking the geographical origin of oak wood: molecular and statistical tools. Mol Ecol 12:1629–1636

    Article  PubMed  CAS  Google Scholar 

  • Dumolin-Lapègue S, Petit RJ, Gielly L, Taberlet P (1999) Amplification of DNA from ancient and modern oak wood. Mol Ecol 8:2137–2140

    Article  PubMed  Google Scholar 

  • Fengel D (1970) Ultrastructural changes during aging of wood cells. Wood Sci Technol 4:176–188

    Article  Google Scholar 

  • Forest Products Laboratory (1999) Wood handbook: wood as an engineering material. USDA general technical report FPL-GTR-113. U.S. Department of Agriculture Forest Service, Madison

    Google Scholar 

  • Haque MN (2002) Modelling of solar kilns and the development of an optimized schedule for drying hardwood timber. PhD thesis, University of Sidney, Australia

  • Ito T, Akao Y, Yi H, Ohguchi K, Matsumoto K, Tanaka T, Iinuma M, Nozawa Y (2003) Antitumor effect of resveratrol oligomers against human cancer cell lines and the molecular mechanisms of apoptosis induced by vaticanol C. Carsinogenesis 24:1489–1497

    Article  CAS  Google Scholar 

  • Kelman LM, Kelman Z (1999) The use of ancient DNA in paleontological studies. J Vertebr Paleontol 19:8–20

    Article  Google Scholar 

  • Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ, Tomsey CS, Zachetti JM, Masibay A, Rabbach DR, Amiott EA, Sprecher CJ (2002) Validation of a 16-locus fluorescent multiplex system. J Forensic Sci 47:773–785

    PubMed  CAS  Google Scholar 

  • Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S (1997) Neandertal DNA sequences and the origin of modern humans. Cell 90:19–30

    Article  PubMed  CAS  Google Scholar 

  • Lee AB, Cooper TA (1995) Improved direct PCR screen for bacterial colonies: wooden toothpicks inhibit PCR amplification. Biotechniques 18:225–226

    PubMed  CAS  Google Scholar 

  • Malaysia Timber Council (2006) The theory and practice of drying. http://www.mtc.com.my/. Accessed 15 Jun 2009

  • Murmanis L, Highley TL, Madison WI, Palmer JG (1987) Cytochemical localization of cellulases in decayed and non-decayed wood. Wood Sci Technol 21:101–109

    Article  CAS  Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Pääbo S (1990) Amplifying ancient DNA. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR-protocols and applications—a laboratory manual. Academic Press, San Diego, pp 159–166

    Google Scholar 

  • Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, Evershed RP, Possnert G, Pääbo S (1998) Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281:402–406

    Article  PubMed  CAS  Google Scholar 

  • Poinar HN, Kuch M, McDonald G, Martin P, Pääbo S (2003) Nuclear gene sequences from a late Pleistocene sloth coprolite. Curr Biol 12:1150–1152

    Article  Google Scholar 

  • Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R (2006) Extraction, amplification and characterization of wood DNA from Dipterocarpaceae. Plant Mol Biol Rep 24:45–55

    Article  CAS  Google Scholar 

  • Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R (2009) DNA from processes and unprocessed wood: factors influencing the isolation success. Forensic Sci Int Genet 3:185–192

    Article  PubMed  CAS  Google Scholar 

  • Shepherd M, Cross M, Stokoe RL, Scott LJ, Jones ME (2002) High-throughput DNA extraction from forest trees. Plant Mol Biol Rep 20:425a–425j

    Google Scholar 

  • Symington CF (1943) Foresters’ manual of dipterocarps: Malayan Forest Records 16. Forest Research Institute Malaysia, Kuala Lumpur

    Google Scholar 

  • Tanaka T, Ito T, Ido Y, Nakaya K, Iinuma M, Chelladurai V (2001) Hopeafuran and a C-glucosyl resveratrol isolated from stem wood of Hopea utilis. Chem Pharm Bull 49:785–787

    Article  PubMed  CAS  Google Scholar 

  • Thomas AR (1953) Malayan timbers—chengal and balau. Malayan Forester 16:103–108

    Google Scholar 

  • Tibbits JFG, McManus LJ, Spokevicius AV, Bossinger G (2006) A rapid method for tissue collection and high-throughput isolation of genomic DNA from mature trees. Plant Mol Biol Rep 24:81–91

    Article  CAS  Google Scholar 

  • Tnah LH, Lee SL, Ng KKS, Tani N, Bhassu S, Othman RY (2009) Geographical traceability of an important tropical timber (Neobalanocarpus heimii) inferred from chloroplast DNA. Forest Ecol Manag 258:1918–1923

    Article  Google Scholar 

  • Tnah LH, Lee SL, Ng KKS, Faridah QZ, Faridah-Hanum I (2010a) Forensic DNA profiling of tropical timber species in Peninsular Malaysia. Forest Ecol Manag 259:1436–1446

    Article  Google Scholar 

  • Tnah LH, Lee SL, Ng KKS, Faridah QZ, Faridah-Hanum I (2010b) Highly variable STR markers of Neobalanocarpus heimii (Dipterocarpaceae) for forensic DNA profiling. J Trop For Sci 22:214–226

    Google Scholar 

  • Wallin JM, Buoncristiani MR, Lazaruk KD, Fildes N, Holt CL, Walsh PS (1998) TWGDAM validation of the AmpFlSTR Blue PCR amplification kit for forensic casework analysis. J Forensic Sci 43:854–870

    PubMed  CAS  Google Scholar 

  • Yoshida K, Kagawa A, Nishiguchi M (2007) Extraction and detection of DNA from wood for species identification. In: Proceeding of the international symposium on development of improved methods to identify Shorea species wood and its origin. Forestry and Forest Products Research Institute, Ibaraki, Japan, pp 27–34

Download references

Acknowledgments

The authors thank Mariam Din, Ghazali Jaafar, Yahya Marhani, Ramli Ponyoh, Sharifah Talib, Suryani Che Seman, Nurul Hudaini Mamat and Nor Salwah Abdul Wahid for their excellent assistance in the field and laboratory. This project was supported in part by the e-Science Research Grant (02-03-10-SF0009) entitled “Development of DNA barcode of Neobalanocarpus heimii (chengal) as a tool for forensics and chain of custody certification” and the Bioversity International Agreement No. APO 05/016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Leong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tnah, L.H., Lee, S.L., Ng, K.K.S. et al. DNA extraction from dry wood of Neobalanocarpus heimii (Dipterocarpaceae) for forensic DNA profiling and timber tracking. Wood Sci Technol 46, 813–825 (2012). https://doi.org/10.1007/s00226-011-0447-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-011-0447-6

Keywords

Navigation