Skip to main content

Advertisement

Log in

Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lewiecki EM (2011) New targets for intervention in the treatment of postmenopausal osteoporosis. Nat Rev Rheumatol 7(11):631–638

    Article  CAS  PubMed  Google Scholar 

  3. Estrada K, Styrkarsdottir U, Evangelou E et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berndt SI, Gustafsson S, Mägi R et al (2013) Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet 45(5):501–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moayyeri A, Hsu YH, Karasik D et al (2014) Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium. Hum Mol Genet 23(11):3054–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kemp JP, Medina-Gomez C, Estrada K et al (2014) Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet 10(6):e1004423

    Article  PubMed  PubMed Central  Google Scholar 

  7. Medina-Gomez C, Kemp JP, Estrada K et al (2012) Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet 8(7):e1002718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng HF, Tobias JH, Duncan E et al (2012) WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet 8(7):e1002745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. García-Ibarbia C, Pérez-Núñez MI, Olmos JM et al (2013) Missense polymorphisms of the WNT16 gene are associated with bone mass, hip geometry and fractures. Osteoporos Int 24(9):2449–2454

    Article  PubMed  Google Scholar 

  10. Hendrickx G, Boudin E, Fijałkowski I et al (2014) Variation in the Kozak sequence of WNT16 results in an increased translation and is associated with osteoporosis related parameters. Bone 59:57–65

    Article  CAS  PubMed  Google Scholar 

  11. Koller DL, Zheng HF, Karasik D et al (2013) Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J Bone Miner Res 28(3):547–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wergedal JE, Kesavan C, Brommage R, Das S, Mohan S (2015) Role of WNT16 in the regulation of periosteal bone formation in mice. Endocrinology 156(3):1023–1032

    Article  CAS  PubMed  Google Scholar 

  13. Movérare-Skrtic S, Henning P, Liu X et al (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20(11):1279–1288

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alam I, Alkhouli M, Gerard-O’Riley RL et al (2016) Osteoblast-specific overexpression of human WNT16 increases both cortical and trabecular bone mass and structure in mice. Endocrinology 157(2):722–736

    Article  CAS  PubMed  Google Scholar 

  15. Movérare-Skrtic S, Wu J, Henning P et al (2015) The bone-sparing effects of estrogen and WNT16 are independent of each other. Proc Natl Acad Sci USA 112(48):14972–14977

    Article  PubMed  PubMed Central  Google Scholar 

  16. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  17. Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28(1):2–17

    Article  PubMed  PubMed Central  Google Scholar 

  18. Todd H, Galea GL, Meakin LB et al (2015) Wnt16 is associated with age-related bone loss and estrogen withdrwal in murine bone. PLoS ONE 10(10):e0140260

    Article  PubMed  PubMed Central  Google Scholar 

  19. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149(6):1192–1205

    Article  CAS  PubMed  Google Scholar 

  20. Cadigan KM, Peifer M (2009) Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 1(2):a002881

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19(2):179–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health Grants AG041517 and AR053237, and Veteran’s Administration Grant BX001478.

Authors’ Contribution

IA and MJE designed the study. IA, AMR, MA, RLG, CK, DKO, WBW, DA, AKM, BP, KL, AGR and MJE conducted the study. IA, AMR, MA, RLG, CK, DKO, WBW, DA, AKM, BP, AMR, KL and AGR analyzed the data. IA, AMR, MA, RLG, AGR and MJE performed the data interpretation. IA, AGR and MJE are involved in drafting the manuscript. IA, AGR and MJE revised the manuscript content. IA, AMR, MA, RLG, CK, DKO, WBW, DA, AKM, BP, KL, AGR and MJE approved the final version of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imranul Alam.

Ethics declarations

Conflict of interest

Imranul Alam, Austin M. Reilly, Mohammed Alkhouli, Rita L. Gerard-O’Riley, Charishma Kasipathi, Dana K. Oakes, Weston B. Wright, Dena Acton, Amie K. McQueen, Bhavmik Patel, Kyung-Eun Lim, Alexander G. Robling and Michael J. Econs declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Animal studies were performed in accordance with the ethical standards and guidelines approved by the Indiana University Animal Care and Use committee (IACUC). This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

223_2016_225_MOESM1_ESM.tif

Supplemental Fig. 1. Osteoblast and osteoclast cellular parameters. Dmp1-hWNT16 transgenic female mice displayed similar values for N.Ob (1A), Ob.Pm (1B), N.Ob/B.Pm (1C) and Ob.S/BS (1C) compared to sex-matched WT mice. In addition, N.Oc (1A), Oc.Pm (1B), N.Oc/B.Pm (1D) and Oc.S/BS (1D) did not differ between Dmp1-hWNT16 transgenic female mice compared to the WT littermates. WT: wild-type; TG: Dmp1-hWNT16 transgenic (TIFF 695 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, I., Reilly, A.M., Alkhouli, M. et al. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes. Calcif Tissue Int 100, 361–373 (2017). https://doi.org/10.1007/s00223-016-0225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0225-4

Keywords

Navigation