Skip to main content

Advertisement

Log in

Combined Effects of Botulinum Toxin Injection and Hind Limb Unloading on Bone and Muscle

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone receives mechanical stimulation from two primary sources, muscle contractions and external gravitational loading; but the relative contribution of each source to skeletal health is not fully understood. Understanding the most effective loading for maintaining bone health has important clinical implications for prescribing physical activity for the treatment or prevention of osteoporosis. Therefore, we investigated the relative effects of muscle paralysis and reduced gravitational loading on changes in muscle mass, bone mineral density, and microarchitecture. Adult female C57Bl/6J mice (n = 10/group) underwent one of the following: unilateral botulinum toxin (BTX) injection of the hind limb, hind limb unloading (HLU), both unilateral BTX injection and HLU, or no intervention. BTX and HLU each led to significant muscle and bone loss. The effect of BTX was diminished when combined with HLU, though generally the leg that received the combined intervention (HLU+BTX) had the most detrimental changes in bone and muscle. We found an indirect effect of BTX affecting the uninjected (contralateral) leg that led to significant decreases in bone mineral density and deficits in muscle mass and bone architecture relative to the untreated controls; the magnitude of this indirect BTX effect was comparable to the direct effect of BTX treatment and HLU. Thus, while it was difficult to definitively conclude whether muscle force or external gravitational loading contributes more to bone maintenance, it appears that BTX-induced muscle paralysis is more detrimental to muscle and bone than HLU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Judex S, Carlson KJ (2009) Is bone’s response to mechanical signals dominated by gravitational loading? Med Sci Sports Exerc 41:2037–2043

    Article  PubMed  Google Scholar 

  2. Kohrt WM, Barry DW, Schwartz RS (2009) Muscle forces or gravity: what predominates mechanical loading on bone? Med Sci Sports Exerc 41:2050–2055

    Article  PubMed Central  PubMed  Google Scholar 

  3. Robling AG (2009) Is bone’s response to mechanical signals dominated by muscle forces? Med Sci Sports Exerc 41:2044–2049

    Article  PubMed Central  PubMed  Google Scholar 

  4. Frost HM (1997) On our age-related bone loss: insights from a new paradigm. J Bone Miner Res 12:1539–1546

    Article  CAS  PubMed  Google Scholar 

  5. Morey-Holton E, Globus RK, Kaplansky A, Durnova G (2005) The hind limb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med 10:7–40

    Article  PubMed  Google Scholar 

  6. Tian X, Jee WS, Li X, Paszty C, Ke HZ (2011) Sclerostin antibody increases bone mass by stimulating bone formation and inhibiting bone resorption in a hind limb-immobilization rat model. Bone 48:197–201

    Article  CAS  PubMed  Google Scholar 

  7. Földes I, Gyarmati J, Rapcsák M, Szöör A, Szilágyi T (1986) Effect of plaster-cast immobilization on the bone. Acta Physiol Hung 67:413–418

    PubMed  Google Scholar 

  8. Wagner EB, Granzella NP, Saito H, Newman DJ, Young LR, Bouxsein ML (2010) Partial weight suspension: a novel murine model for investigating adaptation to reduced musculoskeletal loading. J Appl Physiol 109:350–357

    Article  PubMed  Google Scholar 

  9. Warner SE, Sanford DA, Becker BA, Bain SD, Srinivasan S, Gross TS (2006) Botox induced muscle paralysis rapidly degrades bone. Bone 38:257–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Tuukkanen J, Wallmark B, Jalovaara P, Takala T, Sjögren S, Väänänen K (1991) Changes induced in growing rat bone by immobilization and remobilization. Bone 12:113–118

    Article  CAS  PubMed  Google Scholar 

  11. Thompson DD, Rodan GA (1988) Indomethacin inhibition of tenotomy-induced bone resorption in rats. J Bone Miner Res 3:409–414

    Article  CAS  PubMed  Google Scholar 

  12. Manske SL, Boyd SK, Zernicke RF (2011) Vertical ground reaction forces diminish in mice after botulinum toxin injection. J Biomech 44:637–643

    Article  PubMed  Google Scholar 

  13. Gross TS, Poliachik SL, Prasad J, Bain SD (2010) The effect of muscle dysfunction on bone mass and morphology. J Musculoskelet Neuronal Interact 10:25–34

    CAS  PubMed  Google Scholar 

  14. Warden SJ, Galley MR, Richard JS, George LA, Dirks RC, Guildenbecher EA, Judd AM, Robling AG, Fuchs RK (2013) Reduced gravitational loading does not account for the skeletal effect of botulinum toxin-induced muscle inhibition suggesting a direct effect of muscle on bone. Bone 54(1):98–105

    Article  CAS  PubMed  Google Scholar 

  15. Poliachik SL, Bain SD, Threet D, Huber P, Gross TS (2010) Transient muscle paralysis disrupts bone homeostasis by rapid degradation of bone morphology. Bone 46:18–23

    Article  PubMed Central  PubMed  Google Scholar 

  16. Manske SL, Boyd SK, Zernicke RF (2010) Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection. Bone 46:24–31

    Article  CAS  PubMed  Google Scholar 

  17. Aoki KR (2001) A comparison of the safety margins of botulinum neurotoxin serotypes A, B, and F in mice. Toxicon 39:1815–1820

    Article  CAS  PubMed  Google Scholar 

  18. Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92:1367–1377

    Article  PubMed  Google Scholar 

  19. Spatz JM, Ellman R, Cloutier AM, Louis L, van Vliet M, Suva LJ, Dwyer D, Stolina M, Ke HZ, Bouxsein ML (2013) Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res 28:865–874

    Article  CAS  PubMed  Google Scholar 

  20. Ellman R, Spatz J, Cloutier A, Palme R, Christiansen BA, Bouxsein ML (2013) Partial reductions in mechanical loading yield proportional changes in bone density, bone architecture, and muscle mass. J Bone Miner Res 28:875–885

    Article  PubMed  Google Scholar 

  21. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486

    Article  PubMed  Google Scholar 

  22. Ellman R, Spatz J, Cloutier A, Palme R, Christiansen B, Bouxsein ML (2013) Partial reductions in mechanical loading yield proportional changes in bone density, bone architecture, and muscle mass. J Bone Miner Res 28(4):875–885

    Article  PubMed  Google Scholar 

  23. Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Eng 1:15–23

    Article  Google Scholar 

  24. Hildebrand T, Rüegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75

    Article  Google Scholar 

  25. Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174

    Article  CAS  PubMed  Google Scholar 

  26. Manske SL, Boyd SK, Zernicke RF (2010) Muscle changes can account for bone loss after botulinum toxin injection. Calcif Tissue Int 87:541–549

    Article  CAS  PubMed  Google Scholar 

  27. Glatt V, Canalis E, Stadmeyer L, Bouxsein ML (2007) Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res 22:1197–1207

    Article  PubMed  Google Scholar 

  28. Grinspoon SK, Baum HBA, Kim V, Coggins C, Klibanski A (1995) Decreased bone formation and increased mineral dissolution during acute fasting in young women. J Clin Endocrinol Metab 80:3628–3633

    CAS  PubMed  Google Scholar 

  29. Finn PF, Dice JF (2006) Proteolytic and lipolytic responses to starvation. Nutrition 22:830–844

    Article  CAS  PubMed  Google Scholar 

  30. Wiegand H, Erdmann G, Wellhoner HH (1976) 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection. Naunyn Schmiedebergs Arch Pharmacol 292:161–165

    Article  CAS  PubMed  Google Scholar 

  31. Lange DJ, Rubin M, Greene PE, Kang UJ, Moskowitz CB, Brin MF, Lovelace RE, Fahn S (1991) Distant effects of locally injected botulinum toxin: a double-blind study of single fiber EMG changes. Muscle Nerve 14:672–675

    Article  CAS  PubMed  Google Scholar 

  32. Lange DJ, Brin MF, Warner CL, Fahn S, Lovelace RE (1987) Distant effects of local injection of botulinum toxin. Muscle Nerve 10:552–555

    Article  CAS  PubMed  Google Scholar 

  33. Dutton JJ (1996) Botulinum-A toxin in the treatment of craniocervical muscle spasms: short- and long-term, local and systemic effects. Surv Ophthalmol 41:51–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was funded by NIH R21 AR057522, NASA NNX10AE39G, and the National Space Biomedical Research Institute through NASA NCC 9-58. R. E. was supported by a NASA-Jenkins predoctoral fellowship. J. M. S. was supported by a Northrop Grumman Aerospace Systems PhD Training Fellowship. This work also received biostatistics support from Hillary Keenan via the Harvard Catalyst, The Harvard Clinical and Translational Science Center (National Center for Research Resources and National Center for Advancing Translational Sciences, National Institutes of Health Award 8UL1TR000170-05, and financial contributions from Harvard University and its affiliated academic health-care centers).

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Ellman.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellman, R., Grasso, D.J., van Vliet, M. et al. Combined Effects of Botulinum Toxin Injection and Hind Limb Unloading on Bone and Muscle. Calcif Tissue Int 94, 327–337 (2014). https://doi.org/10.1007/s00223-013-9814-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9814-7

Keywords

Navigation