Skip to main content
Log in

Rapid Establishment of Chemical and Mechanical Properties during Lamellar Bone Formation

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The development of prophylaxes and treatments of bone diseases that can effectively increase the strength of bone as a structure necessitates a better understanding of the time course by which chemical properties define the stiffness of the material during primary and secondary mineralization. It was hypothesized that these processes would be relatively slow in the actively growing skeleton. Seven-week-old Sprague-Dawley female rats (n = 8) were injected with multiple fluorochrome labels over a time span of 3 weeks and killed. Chemical and mechanical properties of the tibial mid-diaphysis were spatially characterized between the endocortical and periosteal surface by in situ infrared microspectroscopy and nanoindentation. The phosphate-to-protein ratio of bone 2–6 days old was 20% smaller at the periosteal surface and 22% smaller at the endocortical surface (P < 0.05 each) compared to older intracortical regions. The ratios of carbonate to protein, crystallinity, type A/type B carbonate, collagen cross-linking, and bone elastic modulus did not differ significantly between bone 2–6, 10–14, and 8–22 days old and intracortical regions. Intracortical properties of 10-week-old rats, except for the carbonate-to-protein ratio which was 23% smaller (P < 0.01), were not significantly different from intracortical matrix properties of young adult rats (5 months, n = 4). Spatially, the phosphate-to-protein ratio (R2 = 0.33) and the phosphate-to-carbonate ratio (R2 = 0.55) were significantly correlated with bone material stiffness, while the combination of all chemical parameters raised the R2 value to 0.83. These data indicate that lamellar bone has the ability to quickly establish its mechanical and chemical tissue properties during primary and secondary mineralization even when the skeleton experiences rapid growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700

    Article  PubMed  CAS  Google Scholar 

  2. Karsenty G (2003) The complexities of skeletal biology. Nature 423:316–318

    Article  PubMed  CAS  Google Scholar 

  3. Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359:1841–1850

    Article  PubMed  Google Scholar 

  4. Amprino R, Engstrom A (1952) Studies on X-ray absorption and diffraction of bone tissue. Acta Anat (Basel) 15:1–22

    CAS  Google Scholar 

  5. Boivin G, Meunier PJ (2003) The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos Int 14(suppl 3):S19–S24

    PubMed  Google Scholar 

  6. Grynpas M (1993) Age and disease-related changes in the mineral of bone. Calcif Tissue Int 53(suppl 1):S57–S64

    PubMed  Google Scholar 

  7. Borah B, Ritman EL, Dufresne TE, Jorgensen SM, Liu S, Sacha J, Phipps RJ, Turner RT (2005) The effect of risedronate on bone mineralization as measured by micro-computed tomography with synchrotron radiation: correlation to histomorphometric indices of turnover. Bone 37:1–9

    Article  PubMed  CAS  Google Scholar 

  8. van der Meulen MC, Jepsen KJ, Mikic B (2001) Understanding bone strength: size isn’t everything. Bone 29:101–104

    Google Scholar 

  9. Judex S, Boyd SK, Qin YX, Miller L, Muller R, Rubin CT (2003) Combining high-resolution microct with material composition to define the quality of bone tissue. Curr Osteoporosis Rep 1:11–19

    Google Scholar 

  10. Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19:2000–2004

    PubMed  Google Scholar 

  11. Ding M, Dalstra M, Danielsen CC, Kabel J, Hvid I, Linde F (1997) Age variations in the properties of human tibial trabecular bone. J Bone Joint Surg Br 79:995–1002

    Article  PubMed  CAS  Google Scholar 

  12. Ferguson VL, Bushby AJ, Boyde A (2003) Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J Anat 203:191–202

    Article  PubMed  Google Scholar 

  13. Follet H, Boivin G, Rumelhart C, Meunier PJ (2004) The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone 34:783–789

    Article  PubMed  CAS  Google Scholar 

  14. McCalden RW, McGeough JA, Barker MB, Court-Brown CM (1993) Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Joint Surg Am 75:1193–1205

    PubMed  CAS  Google Scholar 

  15. Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453

    Article  PubMed  CAS  Google Scholar 

  16. Silva MJ, Ulrich SR (2000) In vitro sodium fluoride exposure decreases torsional and bending strength and increases ductility of mouse femora. J Biomech 33:231–234

    Article  PubMed  CAS  Google Scholar 

  17. Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481

    Article  PubMed  CAS  Google Scholar 

  18. Bailey AJ, Sims TJ, Ebbesen EN, Mansell JP, Thomsen JS, Mosekilde L (1999) Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int 65:203–210

    Article  PubMed  CAS  Google Scholar 

  19. Oxlund H, Mosekilde L, Ortoft G (1996) Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone 19:479–484

    PubMed  CAS  Google Scholar 

  20. Rho JY, Roy ME, Tsui TY, Pharr GM (1999) Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J Biomed Mater Res 45:48–54

    Article  PubMed  CAS  Google Scholar 

  21. Sims TJ, Miles CA, Bailey AJ, Camacho NP (2003) Properties of collagen in OIM mouse tissues. Connect Tissue Res 44(suppl 1):202–205

    PubMed  CAS  Google Scholar 

  22. Wang X, Bank RA, TeKoppele JM, Agrawal CM (2001) The role of collagen in determining bone mechanical properties. J Orthop Res 19:1021–1026

    Article  PubMed  CAS  Google Scholar 

  23. Weiner S, Traub W (1992) Bone structure: from angstroms to microns. FASEB J 6:879–885

    PubMed  CAS  Google Scholar 

  24. Ferguson VL, Ayers RA, Bateman TA, Simske SJ (2003) Bone development and age-related bone loss in male C57BL/6J mice. Bone 33:387–398

    Article  PubMed  Google Scholar 

  25. Somerville JM, Aspden RM, Armour KE, Armour KJ, Reid DM (2004) Growth of C57BL/6 mice and the material and mechanical properties of cortical bone from the tibia. Calcif Tissue Int 74:469–475

    Article  PubMed  CAS  Google Scholar 

  26. Miller LM, Carlson CS, Carr GL, Chance MR (1998) A method for examining the chemical basis for bone disease: synchrotron infrared microspectroscopy. Cell Mol Biol (Noisy-le-grand) 44:117–127

    CAS  Google Scholar 

  27. Miller LM, Novatt JT, Hamerman D, Carlson CS (2004) Alterations in mineral composition observed in osteoarthritic joints of cynomolgus monkeys. Bone 35:498–506

    Article  PubMed  CAS  Google Scholar 

  28. Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain. Calcif Tissue Int 49:383–388

    PubMed  CAS  Google Scholar 

  29. Gadaleta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL (1996) Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58:9–16

    PubMed  CAS  Google Scholar 

  30. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    PubMed  CAS  Google Scholar 

  31. Camacho NP, Hou L, Toledano TR, Ilg WA, Brayton CF, Raggio CL, Root L, Boskey AL (1999) The material basis for reduced mechanical properties in oim mice bones. J Bone Miner Res 14:264–272

    PubMed  CAS  Google Scholar 

  32. Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T, Peterson M, Rimnac CM (2000) A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone 27:541–550

    Article  PubMed  CAS  Google Scholar 

  33. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    CAS  Google Scholar 

  34. Van Der Linden JC, Birkenhager-Frenkel DH, Verhaar JA, Weinans H (2001) Trabecular bone’s mechanical properties are affected by its non-uniform mineral distribution. J Biomech 34:1573–1580

    Google Scholar 

  35. Martin EA, Ritman EL, Turner RT (2003) Time course of epiphyseal growth plate fusion in rat tibiae. Bone 32:261–267

    Article  PubMed  CAS  Google Scholar 

  36. Danielsen CC, Mosekilde L, Svenstrup B (1993) Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution. Calcif Tissue Int 52:26–33

    Article  PubMed  CAS  Google Scholar 

  37. Hunziker EB, Schenk RK (1989) Physiological mechanisms adopted by chondrocytes in regulating longitudinal bone growth in rats. J Physiol 414:55–71

    PubMed  CAS  Google Scholar 

  38. Fukuda S, Iida H (2004) Age-related changes in bone mineral density, cross-sectional area and the strength of long bones in the hind limbs and first lumbar vertebra in female Wistar rats. J Vet Med Sci 66:755–760

    Article  PubMed  Google Scholar 

  39. Li XQ, Klein L (1990) Age-related inequality between rates of formation and resorption in various whole bones of rats. Proc Soc Exp Biol Med 195:350–355

    PubMed  CAS  Google Scholar 

  40. Rho JY, Zioupos P, Currey JD, Pharr GM (2002) Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. J Biomech 35:189–198

    Article  PubMed  CAS  Google Scholar 

  41. Rho JY, Zioupos P, Currey JD, Pharr GM (1999) Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25:295–300

    Article  PubMed  CAS  Google Scholar 

  42. Goodwin KJ, Sharkey NA (2002) Material properties of interstitial lamellae reflect local strain environments. J Orthop Res 20:600–606

    Article  PubMed  Google Scholar 

  43. Keller TS, Spengler DM (1989) Regulation of bone stress and strain in the immature and mature rat femur. J Biomech 22:1115–1127

    Article  PubMed  CAS  Google Scholar 

  44. Judex S, Donahue LR, Rubin C (2002) Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. FASEB J 16:1280–1282

    PubMed  CAS  Google Scholar 

  45. Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255

    PubMed  CAS  Google Scholar 

  46. Coats AM, Zioupos P, Aspden RM (2003) Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis. Calcif Tissue Int 73:66–71

    Article  PubMed  CAS  Google Scholar 

  47. Zioupos P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 45:108–116

    Article  PubMed  CAS  Google Scholar 

  48. Silva MJ, Brodt MD, Fan Z, Rho JY (2004) Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6. J Biomech 37:1639–1646

    Article  PubMed  Google Scholar 

  49. Frushour BG, Koenig JL (1975) Raman scattering of collagen, gelatin, and elastin. Biopolymers 14:379–391

    PubMed  CAS  Google Scholar 

  50. Baig AA, Fox JL, Young RA, Wang Z, Hsu J, Higuchi WI, Chhettry A, Zhuang H, Otsuka M (1999) Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters. Calcif Tissue Int 64:437–449

    Article  PubMed  CAS  Google Scholar 

  51. Tanck E, Van Donkelaar CC, Jepsen KJ, Goldstein SA, Weinans H, Burger EH, Huiskes R (2004) The mechanical consequences of mineralization in embryonic bone. Bone 35:186–190

    Article  PubMed  CAS  Google Scholar 

  52. Tarnowski CP, Ignelzi MA J., Morris MD (2002) Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 17:1118–1126

    PubMed  Google Scholar 

Download references

Acknowledgment

Funding from NASA NAG 9-1499 (S.J.), the Whitaker Foundation RG-02-0564 (S.J.), NSBRI TD00207 (Y-XQ), and SUNY-BNL Seed (S.J.) was greatly appreciated. We also thank Ben Adler, Randy Smith, Liqin Xie, and Dr. Erik Mittra for expert technical advice. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02 98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Judex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busa, B., Miller, L.M., Rubin, C.T. et al. Rapid Establishment of Chemical and Mechanical Properties during Lamellar Bone Formation. Calcif Tissue Int 77, 386–394 (2005). https://doi.org/10.1007/s00223-005-0148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-005-0148-y

Keywords

Navigation