Skip to main content

Advertisement

Log in

Entropy and drift in word hyperbolic groups

  • Published:
Inventiones mathematicae Aims and scope

Abstract

The fundamental inequality of Guivarc’h relates the entropy and the drift of random walks on groups. It is strict if and only if the random walk does not behave like the uniform measure on balls. We prove that, in any nonelementary hyperbolic group which is not virtually free, endowed with a word distance, the fundamental inequality is strict for symmetric measures with finite support, uniformly for measures with a given support. This answers a conjecture of S. Lalley. For admissible measures, this is proved using previous results of Ancona and Blachère–Haïssinsky–Mathieu. For non-admissible measures, this follows from a counting result, interesting in its own right: we show that, in any infinite index subgroup, the number of non-distorted points is exponentially small compared to the growth of balls in the whole group. The uniformity is obtained by studying the behavior of measures that degenerate towards a measure supported on an elementary subgroup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Aaronson, J.: An Introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs, vol. 50. American Mathematical Society, Providence (1997)

    Book  MATH  Google Scholar 

  2. Arzhantseva, G.N., Lysenok, I.G.: Growth tightness for word hyperbolic groups. Math. Z. 241, 597–611 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ancona, A.: Negatively curved manifolds, elliptic operators, and the Martin boundary. Ann. Math. (2) 125, 495–536 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999)

    Google Scholar 

  5. Blachère, S., Haïssinsky, P., Mathieu, P.: Harmonic measures versus quasiconformal measures for hyperbolic groups. Ann. Sci. Éc. Norm. Supér. (4) 44, 683–721 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Finitely Supported Measures on \(SL_2(\mathbb{R})\) Which are Absolutely Continuous at Infinity, Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 2050, pp. 133–141. Springer, Heidelberg (2012)

    Google Scholar 

  7. Bowditch, B.H.: Boundaries of Strongly Accessible Hyperbolic Groups. The Epstein Birthday Schrift, Geometry & Topology Monographs, vol. 1. Geometry & Topology Publications, Coventry, pp. 51–97 (1998)

  8. Bowditch, B.H.: Cut points and canonical splittings of hyperbolic groups. Acta Math. 180, 145–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calegari, D.: The Ergodic Theory of Hyperbolic Groups. Geometry and Topology Down Under, Contemporary Mathematics, vol. 597. American Mathematical Society, Providence, RI, pp. 15–52 (2013)

  10. Connell, C., Muchnik, R.: Harmonicity of quasiconformal measures and Poisson boundaries of hyperbolic spaces. Geom. Funct. Anal. 17, 707–769 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coornaert, M.: Mesures de Patterson–Sullivan sur le bord d’un espace hyperbolique au sens de Gromov. Pac. J. Math. 159, 241–270 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dal’bo, F.: Remarques sur le spectre des longueurs d’une surface et comptages. Bol. Soc. Bras. Mat. (N.S.) 30, 199–221 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. de la Harpe, P.: Topics in Geometric Group Theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (2000)

    Google Scholar 

  14. Erschler, A., Karlsson, A.: Homomorphisms to \(\mathbb{R}\) constructed from random walks. Ann. Inst. Fourier (Grenoble) 60, 2095–2113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Erschler, A., Kaimanovich, V.: Continuity of asymptotic characteristics for random walks on hyperbolic groups. Funktsional. Anal. i Prilozhen. 47, 84–89 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  17. Ghys, É., de la Harpe, P. (eds.): Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston Inc., Boston, MA (1990). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988

  18. Guivarc’h, Y., Le Jan, Y.: Asymptotic winding of the geodesic flow on modular surfaces and continued fractions. Ann. Sci. École Norm. Sup. (4) 26, 23–50 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gouëzel, S.: Martin boundary of random walks with unbounded jumps in hyperbolic groups. Ann. Probab. 43, 2374–2404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guivarc’h, Y.: Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire, Conference on Random Walks (Kleebach, 1979) (French), Astérisque, vol. 74, Soc. Math. France, Paris, pp. 47–98, 3 (1980)

  21. Haïssinsky, P.: Marches aléatoires sur les groupes hyperboliques, Géométrie ergodique, Monographs of Enseignement Mathématique, vol. 43, Enseignement Mathématique, Geneva, pp. 199–265 (2013)

  22. Hocking, J.G., Young, G.S.: Topology. Addison-Wesley Publishing Co., Boston (1961)

    MATH  Google Scholar 

  23. Izumi, M., Neshveyev, S., Okayasu, R.: The ratio set of the harmonic measure of a random walk on a hyperbolic group. Israel J. Math. 163, 285–316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaimanovich, V.K.: The Poisson formula for groups with hyperbolic properties. Ann. Math. (2) 152, 659–692 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kapovich, I., Benakli, N.: Boundaries of hyperbolic groups. Combinatorial and geometric group theory (New York, 2000, Hoboken, NJ, 2001) Contemporary Mathematics, vol. 296, American Mathematical Society, Providence, RI, pp. 39–93 (2002)

  26. Karlsson, A., Ledrappier, F.: Noncommutative ergodic theorems. Geometry, Rigidity, and Group Actions. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, pp. 396–418 (2011)

  27. Lalley, S.: Random walks on hyperbolic groups. http://galton.uchicago.edu/~lalley/Talks/paris-talkC.pdf (2014)

  28. Ledrappier, F.: Applications of dynamics to compact manifolds of negative curvature. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, pp. 1195–1202 (1995)

  29. Le Prince, V.: Dimensional properties of the harmonic measure for a random walk on a hyperbolic group. Trans. Am. Math. Soc. 359, 2881–2898 (2007). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mairesse, J., Mathéus, F.: Random walks on free products of cyclic groups. J. Lond. Math. Soc. (2) 75, 47–66 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Neumann, B.H.: Groups covered by finitely many cosets. Publ. Math. Debr. 3(1954), 227–242 (1955)

    MathSciNet  MATH  Google Scholar 

  32. Peigné, M.: On the Patterson–Sullivan measure of some discrete group of isometries. Israel J. Math. 133, 77–88 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Revuz, D.: Markov Chains. North-Holland Mathematical Library, vol. 11, 2nd edn. North-Holland Publishing Co., Amsterdam (1984)

  34. Sharp, R.: Relative growth series in some hyperbolic groups. Math. Ann. 312, 125–132 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Swarup, G.A.: On the cut point conjecture. Electron. Res. Announc. Am. Math. Soc. 2, 98–100 (1996). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tanaka, R.: Hausdorff spectrum of harmonic measure. Ergod. Theory Dyn. Syst. 37(1), 277–307 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vershik, A.: Dynamic theory of growth in groups: entropy, boundaries, examples. Uspekhi Mat. Nauk 55, 59–128 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Varopoulos, N.T., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge Tracts in Mathematics, vol. 100. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  39. Woess, Wolfgang: Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Frédéric Mathéus would like to thank Pr. De-Jun Feng for suggesting Propositions 6.2 and 6.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Gouëzel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouëzel, S., Mathéus, F. & Maucourant, F. Entropy and drift in word hyperbolic groups. Invent. math. 211, 1201–1255 (2018). https://doi.org/10.1007/s00222-018-0788-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-018-0788-y

Navigation