Skip to main content
Log in

Diffusion for chaotic plane sections of 3-periodic surfaces

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study chaotic plane sections of some particular family of triply periodic surfaces. The question about possible behavior of such sections was posed by S. P. Novikov. We prove some estimations on the diffusion rate of these sections using the connection between Novikov’s problem and systems of isometries—some natural generalization of interval exchange transformations. Using thermodynamical formalism, we construct an invariant measure for systems of isometries of a special class called the Rauzy gasket, and investigate the main properties of the Lyapunov spectrum of the corresponding suspension flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abramov, L.M., Rokhlin, V.A.: The entropy of a skew product of measure-preserving transformations, Vestnik Leningrad. Univ. 17, 5–13 (1962, in Russian) [Am. Math. Soc. Transl. (Ser. 2) 48, 225–265 (1965)]

  2. Arnoux, P., Starosta, S.: Rauzy gasket, further developments in fractals and related fields. Math. Found. Connect. 13, 1–24 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Arnoux, P., Yoccoz, J.-C.: Construction de difféomorphismes pseudo-Anosov. C. R. Acad. Sci. Paris 292, 75–78 (1981)

    MathSciNet  MATH  Google Scholar 

  4. Avila, A., Delecroix, V.: Some monoids of Pisot matrices. arXiv:1506.03692

  5. Avila, A., Hubert, P., Skripchenko, A.: On the Hausdorff dimension of the Rauzy gasket. arXiv:1311.5361

  6. Avila, A., Forni, G.: Weak mixing for interval exchange transformations and translation flows. Ann. Math. 165, 637–664 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Avila, A., Gouëzel, S., Yoccoz, J.-C.: Exponential mixing for Teichmüller flow. Publ. Math. IHÉS 104, 143–211 (2006)

    Article  MATH  Google Scholar 

  8. Avila, A., Viana, M.: Simplicity of Lyapunov spectra: proof of the Zorich–Kontsevich conjecture. Acta Math. 198, 1–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bestvina, M., Feign, M.: Stable Actions of groups on real trees. Invent. Math. 121, 287–321 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bowen, R.: Equilibrium States and the Theory of Anosov Diffeomorphisms, Lect. Notes in Math., vol. 470. Springer, Berlin (1975)

    Book  Google Scholar 

  11. Bufetov, A.: Decay of correlations for the Rauzy–Veech–Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of abelian differentials. J. Am. Math. Soc. 19(3), 579–623 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bufetov, A., Gurevich, B.: Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials. Sb. Math. 202(7), 935–970 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Buzzi, J., Sarig, O.: Uniqueness of equilibrium measures for countable Markov shifts and multi-dimensional piecewise expanding maps. Ergod. Theory Dyn. Syst. 23(5), 1383–1400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delecroix, V., Hubert, P., Lelièvre, S.: Diffusion for the periodic wind-tree model. Ann. ENS 47(3), 1085–1110 (2014)

    MathSciNet  MATH  Google Scholar 

  15. De Leo, R., Dynnikov, I.: Geometry of plane sections of the infinite regular skew polyhedron 4,6|4. Geom. Dedicata 138(1), 51–67 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dynnikov, I.: Semiclassical motion of the electron. a proof of the Novikov conjecture in general position and counterexamples. In: Solitons, Geometry and Topology: on the Cross road, Translations of the AMS, Ser. 2, vol. 179, pp. 45–73. AMS, Providence (1997)

  17. Dynnikov, I.: Interval identification systems and plane sections of 3-periodic surfaces. Proc. Steklov Inst. Math. 263, 65–77 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dynnikov, I., Skripchenko, A.: Symmetric band complexes of thin type and chaotic sections which are not quite chaotic. arXiv:1501.06866

  19. Forni, G.: Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. Ann. Math. 155, 1–103 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gaboriau, D., Levitt, G., Paulin, F.: Pseudogroups of isometries of \(\mathbb{R}\) and Rips’ theorem on free actions on \(\mathbb{R}\)-trees. Isr. J. Math. 87, 403–428 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hämenstadt, U.: Symbolic dynamics for Teichmuller flow. arXiv:1112.6107

  22. Levitt, G.: La dynamique des pseudogroupes de rotations. Invent. Math. 113, 633–670 (1993)

    Article  MathSciNet  Google Scholar 

  23. McMullen, C.: Cascades of the dynamics of measured foliations. Ann. Sci. Éc. Norm. Supér. 48, 1–39 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Matheus, C., Möller, M., Yoccoz, J.-C.: A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces. Invent. Math. 202(1), 333–425 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ya, A., Maltsev, A.Y., Novikov, S.P.: Dynamical systems, topology, and conductivity in normal metals. J. Stat. Phys. 115, 31–46 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Novikov, S.P.: The Hamiltonian formalism and multivalued analogue of Morse theory. Uspekhi Mat. Nauk 37(5), 3–49 (1982, Russian) [translated in Russian Math. Surv. 37(5), 1–56 (1982)]

  27. Oseledets, V.I.: Multiplicative ergodic theorem: characteristic Lyapunov exponents of dynamical systems. Trudy MMO 19, 179–210 (1968). (in Russian)

    MATH  Google Scholar 

  28. Sarig, O.: Lecture notes on thermodynamical formalism for countable Markov shifts, lectures notes. http://www.wisdom.weizmann.ac.il/sarigo/TDFnotes

  29. Sarig, O.: Thermodynamic formalism for countable Markov shift. Ergod. Theory Dyn. Syst. 19(6), 1565–1593 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sarig, O.: Phase Transitions for countable Markov shift. Commun. Math. Phys. 217, 555–577 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sarig, O.: Existence of Gibbs measures for countable Markov shifts. Proc. Am. Math. Soc. 131(6), 1751–1758 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Skripchenko, A.: Symmetric interval identification systems of order 3. Discrete Contin. Dyn. Syst. 32(2), 643–656 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Skripchenko, A.: On connectedness of chaotic sections of some 3-periodic surfaces. Ann. Global Anal. Geom. 43, 252–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Veech, W.: Gauss measures for transformations on the space of interval exchange maps. Ann. Math. (2) 115(1), 201–242 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yoccoz, J.-C.: Interval exchange maps and translation surfaces, lectures notes. http://www.college-de-france.fr/media/jean-christophe-yoccoz/UPL15305_PisaLecturesJCY2007

  36. Zorich, A.: A problem of Novikov on the semiclassical motion of an electron in a uniform almost rational magnetic field. Russ. Math. Surv. 39(5), 287–288 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zorich, A.: Deviation for interval exchange transformations. Ergod. Theory Dyn. Syst. 17(6), 1477–1499 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zorich, A.: How do the Leaves of a Closed 1-form Wind Around a Surface? Transl. of the AMS, Ser. 2, vol. 197, p. 135–178. AMS, Providence (1999)

Download references

Acknowledgments

We heartily thank A. Zorich for posing the problem and several improvements to the first version of the text. We are very grateful to F. Ledrappier who kindly explained Sarig’s theory to us. We also thank I. Dynnikov and V. Delecroix for many fruitful discussions and C. Matheus for his explanations on the Galois version of the twisting/pinching criterium. We thank C. McMullen for the bottom part of the Fig. 1. We also thank the anonymous referee for many useful suggestions and improvements to the previous version of the paper. A. Avila was partially supported by the ERC Starting Grant “Quasiperiodic”and by the Balzan project of Jacob Palis. P. Hubert was partially supported by the projet ANR GeoDyM and ANR VALET. A. Skripchenko was partially supported by the Fondation Sciences Mathématiques de Paris, Metchnikov scholarship and the Dynasty Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Hubert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila, A., Hubert, P. & Skripchenko, A. Diffusion for chaotic plane sections of 3-periodic surfaces. Invent. math. 206, 109–146 (2016). https://doi.org/10.1007/s00222-016-0650-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-016-0650-z

Keywords

Navigation