Skip to main content
Log in

On hyperboundedness and spectrum of Markov operators

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Consider an ergodic Markov operator \(M\) reversible with respect to a probability measure \(\mu \) on a general measurable space. It is shown that if \(M\) is bounded from \(\mathbb {L}^2(\mu )\) to \(\mathbb {L}^p(\mu )\), where \(p>2\), then it admits a spectral gap. This result answers positively a conjecture raised by Høegh-Krohn and Simon (J. Funct. Anal. 9:121–80, 1972) in the more restricted semi-group context. The proof is based on isoperimetric considerations and especially on Cheeger inequalities of higher order for weighted finite graphs recently obtained by Lee et al. (Proceedings of the 2012 ACM Symposium on Theory of Computing, 1131–1140, ACM, New York, 2012). It provides a quantitative link between hyperboundedness and an eigenvalue different from the spectral gap in general. In addition, the usual Cheeger inequality is extended to the higher eigenvalues in the compact Riemannian setting and the exponential behaviors of the small eigenvalues of Witten Laplacians at small temperature are recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon, B., Høegh-Krohn, R.: Hypercontractive semigroups and two dimensional self-coupled Bose fields. J. Funct. Anal. 9, 121–180 (1972)

  2. Reed, M., Simon, B.: Methods of modern mathematical physics. In: Functional analysis, vol. I, 2nd edn. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980

  3. Yosida, K.: Functional analysis. In: Classics in Mathematics. Springer, Berlin (1995) (Reprint of the sixth (1980) edition)

  4. Fukushima, M., Ōshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes. In: de Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co., Berlin (1994)

  5. Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques. In: Panoramas et Synthèses [Panoramas and Syntheses], vol. 10. Société Mathématique de France, Paris. With a preface by Dominique Bakry and Michel Ledoux. (2000)

  6. Aida, S.: Uniform positivity improving property, Sobolev inequalities, and spectral gaps. J. Funct. Anal. 158(1), 152–185 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mathieu, P.: Quand l’inégalité log-Sobolev implique l’inégalité de trou spectral. In: Séminaire de Probabilités, XXXII. Lecture Notes in Mathematics, vol. 1686, pp. 30–35. Springer, Berlin (1998)

  8. Liming, W.: Uniformly integrable operators and large deviations for Markov processes. J. Funct. Anal. 172(2), 301–376 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hino, M.: Exponential decay of positivity preserving semigroups on \(L^p\). Osaka J. Math. 37(3), 603–624 (2000)

    MATH  MathSciNet  Google Scholar 

  10. Hino, M.: Correction to: “Exponential decay of positivity preserving semigroups on \(L^p\)” [Osaka J. Math. 37(3), 2000, pp. 603–624; MR1789439 (2001k:60109)]. Osaka J. Math. 39(3), 771 (2002)

    MathSciNet  Google Scholar 

  11. Cattiaux, P.: A pathwise approach of some classical inequalities. Potential Anal. 20(4), 361–394 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang, F.-Y.: Spectral gap for hyperbounded operators. Proc. Am. Math. Soc. 132(9), 2629–2638 (2004). (electronic)

    Article  MATH  Google Scholar 

  13. Gong, F., Liming, W.: Spectral gap of positive operators and applications. J. Math. Pures Appl. (9) 85(2), 151–191 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wang, F.-Y.: Functional Inequalities, Markov Semigroups and Spectral Theory. Science Press, Beijing (2005)

    Google Scholar 

  15. Lee, J.R., Oveis Gharan, S., Trevisan, L.: Multi-way spectral partitioning and higher-order Cheeger inequalities. STOC’12 –Proceedings of the 2012 ACM Symposium on Theory of Computing, 1117–1130, ACM, New York (2012)

  16. Holley, R.A., Kusuoka, S., Stroock, D.W.: Asymptotics of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal. 83(2), 333–347 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang, F.-Y.: Criteria of spectral gap for Markov operators. J. Funct. Anal. 266(4), 2137–2152 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu, S.: Multi-way dual Cheeger constants and spectral bounds of graphs. ArXiv e-prints, January 2014

  19. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton University Press, Princeton (1970)

  20. Alon, N., Milman, V.D.: \(\lambda _1,\) isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B 38(1), 73–88 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986). Theory of computing (Singer Island, Fla., 1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lawler, G.F., Sokal, A.D.: Bounds on the \(L^2\) spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality. Trans. Am. Math. Soc. 309(2), 557–580 (1988)

    MATH  MathSciNet  Google Scholar 

  23. Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly mixing Markov chains. Inform. Comput. 82(1), 93–133 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Miclo, L.: On eigenfunctions of Markov processes on trees. Probab. Theory Related Fields 142(3–4), 561–594 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Daneshgar, A., Javadi, R., Miclo, L.: On nodal domains and higher-order Cheeger inequalities of finite reversible Markov processes. Stoch. Process. Appl. 122(4), 1748–1776 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Louis, A., Raghavendra, P., Tetali, P., Vempala, S.: Many sparse cuts via higher eigenvalues. STOC’12 –Proceedings of the 2012 ACM Symposium on Theory of Computing, 1131–1140, ACM, New York (2012)

  27. Helffer, B., Hoffmann-Ostenhof, T., Terracini, S.: Nodal domains and spectral minimal partitions. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(1), 101–138 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Helffer, B.: Semiclassical analysis, Witten Laplacians, and statistical mechanics. In: Series in Partial Differential Equations and Applications, vol. 1. World Scientific Publishing Co., Inc., River Edge (2002)

  29. Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260. Springer, New York (1984) (Translated from the Russian by Joseph Szücs)

  30. Miclo, L.: Comportement de spectres d’opérateurs de Schrödinger à basse température. Bull. Sci. Math. 119(6), 529–553 (1995)

    MATH  MathSciNet  Google Scholar 

  31. Helffer, B., Nier, F.: Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary. Mém. Soc. Math. Fr. (N.S.) (105), vi+89 (2006)

  32. Helffer, B., Klein, M., Nier, F.: Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Mat. Contemp. 26, 41–85 (2004)

    MATH  MathSciNet  Google Scholar 

  33. Bovier, A., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues. JEMS 7(1), 69–99 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Buser, P.: A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15(2), 213–230 (1982)

    MATH  MathSciNet  Google Scholar 

  35. Funano, K.: Eigenvalues of Laplacian and multi-way isoperimetric constants on weighted Riemannian manifolds. ArXiv e-prints, July 2013

  36. Ledoux, M.: A simple analytic proof of an inequality by P. Buser. Proc. Am. Math. Soc. 121(3), 951–959 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  37. Bérard, P., Helffer, B.: Remarks on the boundary set of spectral equipartitions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2007), 20120492 (2014)

  38. Neveu, J.: Martingales à temps discret. Masson et Cie, éditeurs, Paris (1972)

  39. Bonami, A.: Étude des coefficients de Fourier des fonctions de \(L^{p}(G)\). Ann. Inst. Fourier (Grenoble) 20(fasc. 2), 335–402 (1970, 1971)

  40. Beckner, W.: Inequalities in Fourier analysis. Ann. Math. (2) 102(1), 159–182 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  41. Nelson, E.: The free Markoff field. J. Funct. Anal. 12, 211–227 (1973)

    Article  MATH  Google Scholar 

  42. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)

    Article  Google Scholar 

  43. Wang, F.-Y.: Sharp explicit lower bounds of heat kernels. Ann. Probab. 25(4), 1995–2006 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to express my gratefulness toward Feng-Yu Wang, who presented to me the conjecture of Høegh-Krohn and Simon and explained me his works on the subject, as well as to Bernard Helffer, who pointed out some shortages around (17) in a first version of this manuscript. Thanks also to the ANR STAB for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Miclo.

Appendix: On principal Dirichlet eigenvalues at small temperature

Appendix: On principal Dirichlet eigenvalues at small temperature

The goal of this appendix is to check the assertions (17), (18), (19) and (20) presented in Sect. 4. Concerning the three first relations, we will adapt the proofs of Holley et al. [16] for the corresponding results relative to the spectral gap of a Witten Laplacian on a compact Riemannian manifold without boundary. Their computations are based on the following ideas. The upper bound is obtained by considering a function approximating the indicator function of a well whose height is maximum among those not intersecting a fixed global minimum of the potential. For the Dirichlet eigenvalues, the argument is even simpler, by using a well of maximum height included in \(A\) or a small ball if there is no such well. Concerning the lower bound, Holley et al. [16] consider paths with minimal elevation connecting generical points of the manifold with a fixed global minimum of the potential. This approach can in principle be applied to the Dirichlet eigenvalues by using paths with minimal elevation connecting generical points of \(A\) to \(\partial A\). But technically it requires some curvature bounds on \(\partial A\), so we preferred to resort to a modified elevation and to paths linking generical points of \(A\) to some nice interior points of \(A^{\mathrm {c}}\). The advantage is that the existence of such points is not really restrictive when one is computing Dirichlet connectivity spectra, as shown by (20).

The notations are those introduced in Sect. 4. We begin by considering the simplest bounds:

Proof of (18) and (19)

It is based, on one hand on the observation that for any fixed \(\beta \ge 0\), the mapping \(\widehat{{\mathcal {D}}}_1\ni A\mapsto \lambda _0(A,L_\beta )\) is non-increasing, when \(\widehat{{\mathcal {D}}}_1\) is endowed with the inclusion order. And on the other hand on the fact that for any \(\beta \ge 0\) and \(B\in \widehat{{\mathcal {D}}}_1\),

$$\begin{aligned} \exp \Big (-\beta \Big (\sup _{B}U-\inf _B U\Big )\Big )\lambda _0(L_0,B)\ \le \ \lambda _0(L_\beta ,B)\\ \le \ \exp \Big (\beta \Big (\sup _{B}U-\inf _B U\Big )\Big )\lambda _0(L_0,B) \end{aligned}$$

If \(B\) is a cycle, we have \(h(B)=\sup _{B}U-\inf _B U\), so (18) follows at once. If \(B\) is a ball of radius \(r>0\), \(\sup _{B}U-\inf _B U\le 2r\left\| \nabla U\right\| _\infty \le 2r\), so that we get for any \(A\in \widehat{{\mathcal {D}}}_1\),

$$\begin{aligned} \lambda _0(L_\beta ,A)&\le e^{2}\max \{\lambda _0(L_0,B)\,:\,B\subset A\hbox { is a ball of radius less than }1/ \beta \} \end{aligned}$$

To conclude to (19), it remains to remark that by compactness of \(S\), there exists a constant \(k_S^{(3)}\ge 1\), depending only on the Riemannian structure of \(S\), such that

$$\begin{aligned} \forall x\in S,\,\forall r\in (0,1],\qquad (k_S^{(3)})^{-1}r^{-2}\ \le \ \lambda _0(L_0,B(x,r))\ \le \ k_S^{(3)}r^{-2} \end{aligned}$$

\(\square \)

The following arguments mainly follow those of Holley et al. [16]. We will adopt their notations (sometimes with a \(A\) in index when the corresponding notions differ), so that we can refer directly to their proof.

Proof of (17)

Let \(\beta \ge 1\) be fixed as well as a set \(A\in \widehat{{\mathcal {D}}}_1(1/\beta )\). We modify the potential \(U\) by defining

$$\begin{aligned} \forall x\in S,\qquad U_A(x)&:= \left\{ \begin{array}{l@{\quad }l} U(x), &{}\hbox {if }x\in A\sqcup \partial A\\ -\infty , &{}\hbox {otherwise} \end{array}\right. \end{aligned}$$

The elevation \(E_A(\gamma )\) of a path \(\gamma \!\in \! {\mathcal {C}}([0,1], S)\) is \(E_A(\gamma )\!=\!\max _{t\in [0,1]}U_A(\gamma (t))\) and for \(x,y\in S\) define

$$\begin{aligned} H_A(x,y)&:= \inf \{ E_A(\gamma )\,:\,\gamma \in {\mathcal {C}}([0,1], S),\, \gamma (0)=x,\, \gamma (1)=y\} \end{aligned}$$

There is no difficulty in checking that

$$\begin{aligned} h(A)&= \max \{H_A(x,y)-U(x)\,:\,x\in A, y\not \in A\}\\&= \max _{x\in A}\min _{j\in [\![J]\!]} H_A(x,y_j)-U(x) \end{aligned}$$

where \(J\) is the number of connected components of \(A^{\mathrm {c}}\) (there are only a finite number of them by the restrictions imposed on \(\widehat{{\mathcal {D}}}_1\)) and where the \(y_j\), \(j\in [\![J]\!]\), are any choice of points in each of them, but we take them satisfying

$$\begin{aligned} \mu (B(y_j,1/\beta )\cap A^{\mathrm {c}})&\ge \frac{\mu (B(y_j,1/\beta ))}{2} \end{aligned}$$

For any \(\beta \ge 1\), there exists a finite cover of \(A\) by balls \(\{B(x_k, 1/\beta )\,:\,k\in [\![N_\beta ]\!]\}\), where the \(x_k\), \(k\in [\![N_\beta ]\!]\), are points of \(A\), where \(N_\beta \le k_S^{(4)}\beta ^{\dim (S)}\), with \(k_S^{(4)}<+\infty \) is a constant depending only on \(S\) and not on \(A\). Denote \(Z_\beta :=\int \exp (-\beta U)\, d\mu \).

Considering any function \(\phi \in {\mathcal {C}}^1(S)\) vanishing on \(A^{\mathrm {c}}\), we can write

$$\begin{aligned} \mu _\beta [\phi ^2]&\le \frac{1}{Z_\beta }\sum _{k\in [\![N_\beta ]\!]}\int \limits _{B(x_k,1/\beta )} \exp (-\beta U(x))\phi ^2(x)\, \mu (dx)\\&= \frac{1}{Z_\beta \mu (B(y_{j(k)},1/\beta )\cap A^{\mathrm {c}})}\sum _{k\in [\![N_\beta ]\!]}\int \limits _{B(x_k,1/\beta )\times ( B(y_{j(k)},1/\beta )\cap A^{\mathrm {c}})}\\&\quad \exp (-\beta U(x))(\phi (x)-\phi (y))^2\, \mu (dx)\mu (dy)\\&\le \frac{2}{Z_\beta \mu (B(y_{j(k)},1/\beta ))}\sum _{k\in [\![N_\beta ]\!]}\int \limits _{B(x_k,1/\beta )\times B(y_{j(k)},1/\beta )}\\&\quad \exp (-\beta U(x))(\phi (x)-\phi (y))^2\, \mu (dx)\mu (dy)\\&\le \frac{2ek_S^{(5)}\beta ^{\dim (S)}}{Z_\beta }\sum _{k\in [\![N_\beta ]\!]}\exp (-\beta U(x_k))\int \limits _{B(x_k,1/\beta )\times B(y_{j(k)},1/\beta )}\\&\quad (\phi (x)-\phi (y))^2\, \mu (dx)\mu (dy) \end{aligned}$$

where \(j(k)\in [\![J]\!]\) is such that

$$\begin{aligned} H_A(x_k,y_{j(k)})&= \min _{j\in [\![J]\!]} H_A(x_k,y_j) \end{aligned}$$

and where \(k_S^{(5)}\ge 1\) is a constant only depending on the structure of \(S\) such that

$$\begin{aligned} \forall x\in S,\,\forall r\in (0,1],\qquad (k_S^{(5)})^{-1}r^{\dim (S)}\ \le \ \mu (B(x,r))\ \le \ k_S^{(5)}r^{\dim (S)} \end{aligned}$$

With these preliminaries, the proof is now identical to that of Holley et al. developed in pages 338–340 of [16]. They find a constant \(k^{(6)}_S>0\), only depending on \(S\), such that for any \(\beta \ge 1\) and \(\phi \) as above,

$$\begin{aligned}&\sup \left\{ \exp (-\beta U(x))\int \limits _{B(x,1/\beta )\times B(y,1/\beta )} (\phi (w)-\phi (v))^2\, \mu (dv)\mu (dw)\right. \\&\qquad \qquad \qquad \qquad \left. \,:\,x\in A, y\not \in A\right\} \\&\quad \qquad \qquad \qquad \le k^{(6)}_S\beta ^{2(\dim (S)-1)}Z_\beta \exp (\beta h(A))\int \left\langle \nabla \phi ,\nabla \phi \right\rangle d\mu _\beta \end{aligned}$$

Putting together the above computations, we end up with the Poincaré inequality

$$\begin{aligned} \mu _\beta [\phi ^2]&\le 2ek^{(4)}_Sk^{(5)}_S k^{(6)}_S\beta ^{4\dim (S)-2} \exp (\beta h(A))\int \left\langle \nabla \phi ,\nabla \phi \right\rangle d\mu _\beta \end{aligned}$$

whose validity for all \({\mathcal {C}}^1\) functions \(\phi \) vanishing outside \(A\) implies (17).\(\square \)

The proof of the remaining bound will justify the restrictions imposed on \(\widehat{{\mathcal {D}}}_n\), which could have looked strange at first view.

Proof of (20)

So let be given \(n\ge 2\), \(\beta \ge 1\) and \((A_1, \ldots , A_n)\in \widehat{\mathcal {D}}_n\) such that \(A_1\) does not belong to \(\widehat{{\mathcal {D}}}_1(1/\beta )\), we are going to prove that there exists \(k\in [\![2,n]\!]\) with

$$\begin{aligned} \lambda _0(L_\beta ,A_k)&\ge {k''}_{\!\!\!S}\beta ^2 \end{aligned}$$
(28)

where \({k''}_{\!\!\!S}>0\) is a constant depending only on the Riemannian structure of \(S\). Indeed, by definition of \(\widehat{{\mathcal {D}}}_1(1/\beta )\), there exists a connected component of \(A^{\mathrm {c}}\) which is such that all its points \(x\) satisfy

$$\begin{aligned} \mu (B(x,1/\beta )\cap A_1)&> \frac{\mu (B(x,1/\beta ))}{2} \end{aligned}$$

By definition of \(\widehat{\mathcal {D}}_n\), this connected component contains a subset \(A_k\), with \(k\in [\![2,n]\!]\), it is the one that will satisfy (28). Consider \((X^{(\beta )}_t)_{t\ge 0}\) a diffusion process of generator \(L_\beta \) and denote \(\tau :=\inf \{t\ge 0\,:\,X^{(\beta )}_t\not \in A_k\}\). Since \(L_\beta \) is elliptic and \(A_k\) is a connected open set, \(\lambda _0(L_\beta ,A_k)\) is the asymptotic rate of getting out of \(A_k\):

$$\begin{aligned} \forall x\in A_k,\quad \lambda _0(L_\beta ,A_k)&= -\lim _{t\rightarrow +\infty }\frac{1}{t}\ln (\mathbb {P}_{x}[\tau >t]) \end{aligned}$$

where the \(x\) in \(\mathbb {P}_x\) indicates that the diffusion is starting from \(x\): \(\mathbb {P}_x\)-almost surely, \(X^{(\beta )}_0=x\). Thus taking into account the Markov property, to get (28), it is sufficient to find another constant \(k_S^{(7)}>0\) depending only on \(S\) such that

$$\begin{aligned} \forall x\in A_k,\quad \mathbb {P}_x[\tau \le 1/\beta ^2]&\ge k_S^{(7)} \end{aligned}$$

It is even enough to show that

$$\begin{aligned} \forall x\in A_k,\quad \mathbb {P}_x[X^{(\beta )}_{1/\beta ^2}\in A_1]&\ge k_S^{(7)} \end{aligned}$$

Denote by \((p_t^{(\beta )}(x,y))_{t>0, x,y\in S}\) the kernels corresponding to the semi-group associated to the generator \(L_\beta \), so we can write

$$\begin{aligned} \mathbb {P}_x[X^{(\beta )}_{1/\beta ^2}\in A_1]&= \int _{A_1}p^{(\beta )}_{1/\beta ^2}(x,y)\, \mu (dy) \end{aligned}$$

From Theorem 3.1 of Wang [43], we have that for any \(t>0\), \(\sigma >0\) and \(x,y\in S\),

$$\begin{aligned} p_t^{(\beta )}(x,y)\ge k_S^{(8)}(2\pi t)^{-\dim (S)/2}\exp \left[ -\left( \frac{1}{2t}+\frac{\sigma }{3\sqrt{t}}\right) \rho ^2(x,y)-\frac{b^2t}{8}\right. \\ \left. -\left( \frac{b^2}{4\sigma }+\frac{2\dim (S)\sigma }{3}\right) \sqrt{t}\right] \end{aligned}$$

where \(k_S^{(8)}>0\) is the volume of \(S\) (with respect to the unnormalized Riemannian measure of \(S\)), where \(\rho (x,y)\) is the Riemannian distance between \(x\) and \(y\) and where \(b:=K_S+\beta \), \(K_S\ge 0\) being such that the Ricci curvature of \(S\) is bounded below by \(-K_S\). In particular if we choose \(\sigma =\beta \), it appears there exists a constant \(k_S^{(9)}>0\), only depending on \(S\), such that

$$\begin{aligned} \forall x\in S,\,\forall y\in B(x,1/\beta ),\qquad p_{1/\beta ^2}^{(\beta )}(x,y)&\ge k_S^{(9)}\beta ^{\dim (S)}\end{aligned}$$

It follows that for all \(x\in A_k\),

$$\begin{aligned} \int _{A_1}p^{(\beta )}_{1/\beta ^2}(x,y)\, \mu (dy)&\ge \int _{A_1\cap B(x,1\beta )}p^{(\beta )}_{1/\beta ^2}(x,y)\, \mu (dy)\\&\ge k_S^{(9)}\beta ^{\dim (S)}\mu (A_1\cap B(x,1\beta ))\\&\ge \frac{k_S^{(9)}}{2}\beta ^{\dim (S)}\mu ( B(x,1\beta ))\\&\ge \frac{k_S^{(9)}}{2k_S^{(5)}} \end{aligned}$$

as required.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miclo, L. On hyperboundedness and spectrum of Markov operators. Invent. math. 200, 311–343 (2015). https://doi.org/10.1007/s00222-014-0538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0538-8

Mathematical Subject Classification (2010)

Navigation