Skip to main content
Log in

Unramified cohomology of degree 3 and Noether’s problem

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let G be a finite group and W be a faithful representation of G over C. The group G acts on the field of rational functions C(W). The question whether the field of invariant functions C(W)G is purely transcendental over C goes back to Emmy Noether. Using the unramified cohomology group of degree 2 of this field as an invariant, Saltman gave the first examples for which C(W)G is not rational over C. Around 1986, Bogomolov gave a formula which expresses this cohomology group in terms of the cohomology of the group G.

In this paper, we prove a formula for the prime to 2 part of the unramified cohomology group of degree 3 of C(W)G. Specializing to the case where G is a central extension of an F p -vector space by another, we get a method to construct nontrivial elements in this unramified cohomology group. In this way we get an example of a group G for which the field C(W)G is not rational although its unramified cohomology group of degree 2 is trivial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adem, A., Milgram, R.J.: Cohomology of finite groups. Grundlehren Math. Wiss., vol. 309. Springer, Berlin (1994)

    MATH  Google Scholar 

  2. Artin, M., Mumford, D.: Some elementary examples of unirational varieties which are not rational. Proc. Lond. Math. Soc. (3) 25, 75–95 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. Éc. Norm. Supér., IV. Sér. 7, 181–202 (1974)

    MATH  MathSciNet  Google Scholar 

  4. Bogomolov, F.A.: The Brauer group of quotient spaces by linear group actions. Izv. Akad. Nauk SSSR, Ser. Mat. 51(3), 485–516 (1987) (English transl. in Math. USSR Izv. 30, 455–485 (1988))

    MATH  Google Scholar 

  5. Bogomolov, F.A.: Stable cohomology of groups and algebraic varieties. Mat. Sb. 183(5), 3–28 (1992) (English transl. in Russ. Acad. Sci., Sb., Math. 76(1), 1–21 (1993))

    Google Scholar 

  6. Bogomolov, F.A., Katsylo, P.I.: Rationality of some quotient varieties. Mat. Sb. 126(168)(4), 584–589 (1985) (English transl. in Math. USSR Sb. 54(2), 571–576 (1986))

    MathSciNet  Google Scholar 

  7. Bourbaki, N.: Algèbre, Chapitres 1 à 3. Diffusion C.C.L.S., Paris (1970)

    MATH  Google Scholar 

  8. Bourbaki, N.: Algèbre, Chapitre 10. Masson, Paris (1980)

    MATH  Google Scholar 

  9. Brown, K.S.: Cohomology of groups. Grad. Texts Math., vol. 87. Springer, New York (1982)

    MATH  Google Scholar 

  10. Colliot-Thélène, J.-L.: Cycles algébriques de torsion et K-théorie algébrique. In: Arithmetic Algebraic Geometry (Trento, 1991). Lect. Notes Math., vol. 1553, pp. 1–49. Springer, Berlin (1993)

  11. Colliot-Thélène, J.-L., Ojanguren, M.: Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford. Invent. Math. 97, 141–158 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Colliot-Thélène, J.-L., Sansuc, J.-J., Soulé, C.: Torsion dans le groupe de Chow de codimension deux. Duke Math. J. 50(3), 763–801 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Edidin, D., Graham, W.: Equivariant intersection theory. Invent. Math. 131(3), 595–634 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Esnault, H., Kahn, B., Levine, M., Viehweg, E.: The Arason invariant and mod 2 algebraic cycles. J. Am. Math. Soc. 11(1), 73–118 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Evens, L.: A generalization of the transfer map in the cohomology of groups. Trans. Am. Math. Soc. 108, 54–65 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  16. Evens, L.: The Cohomology of Groups. Clarendon press, Oxford (1991)

    MATH  Google Scholar 

  17. Fischer, E.: Die Isomorphie der Invarientenkörper der endlichen Abel’schen Gruppen linearer Transformationen. Nachr. von der Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse 1, 77–80 (1915)

    Google Scholar 

  18. Fulton, W.: Intersection theory. Ergeb. Math. Grenzgeb. 3. Folge, vol. 2. Springer, Berlin (1984)

    MATH  Google Scholar 

  19. Fulton, W., MacPherson, R.: Characteristic classes of direct image bundles for covering maps. Ann. Math. (2) 125, 1–92 (1987)

    Article  MathSciNet  Google Scholar 

  20. Hochschild, G., Serre, J.-P.: Cohomology of group extensions. Trans. Am. Math. Soc. 74, 110–134 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  21. Noether, E.: Gleichungen mit vorgeschriebener Gruppe. Math. Ann. 78, 221–229 (1916)

    Article  MathSciNet  Google Scholar 

  22. Peyre, E.: Unramified cohomology and rationality problems. Math. Ann. 296, 247–268 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Peyre, E.: Galois cohomology in degree three and homogeneous varieties. K-theory 15, 99–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Peyre, E.: Application of motivic complexes to negligible classes. In: Algebraic K-theory, Raskind, W., Weibel, C., eds., (Seattle, 1997) Proc. Symp. Pure Math., vol. 67, pp. 181–211. AMS, Providence (1999)

  25. Quillen, D.: Higher algebraic K-theory I. In: Bass, H. (ed.), Higher K-theories, (Seattle, 1972). Lect. Notes Math., vol. 341, pp. 85–147. Springer, Berlin (1973)

  26. Revoy, P.: Trivecteurs de rang 6. Bull. Soc. Math. Fr. 59, 141–155 (1979)

    MathSciNet  Google Scholar 

  27. Rost, M.: Chow groups with coefficients. Doc. Math., J. DMV 1, 319–393 (1996)

    MATH  MathSciNet  Google Scholar 

  28. Saltman, D.J.: Noether’s problem over an algebraically closed field. Invent. Math. 77, 71–84 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  29. Saltman, D.J.: Brauer groups of invariant fields, geometrically negligible classes, an equivariant Chow group, and unramified H3. In: K-theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Jacob, B., Rosenberg, A. (eds.), (Santa-Barbara, 1992). Proc. Symp. Pure Math., vol. 58.1, pp. 189–246. AMS, Providence (1995)

  30. Serre, J.-P.: Résumé des cours et travaux. Annuaire du Collège de France, pp. 111–123. Collège de France, Paris (1990–1991)

  31. Serre, J.-P.: Corps locaux. Actualités Scientifiques et Industrielles, vol. 1296. Hermann, Paris (1968)

    Google Scholar 

  32. Serre, J.-P.: Représentations Linéaires des Groupes Finis, 3rd. edn.. Hermann, Paris (1978)

  33. Swan, R.G.: Invariant rational functions and a problem of Steenrod. Invent. Math. 7, 148–158 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  34. Totaro, B.: The Chow ring of a classifying space. In: Raskind, W., Weibel, C. (eds.), Algebraic K-theory, (Seattle, 1997). Proc. Symp. Pure Math., vol. 67, pp. 249–281. AMS, Providence (1999)

    Google Scholar 

  35. Voskresenskiĭ, V.E.: Fields of invariants for abelian groups. Usp. Mat. Nauk 28(4), 77–102 (1972) (English transl. in Russ. Math. Surv. 28(4), 79–105 (1973))

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Peyre.

Additional information

Dedicated to Jean-Louis Colliot-Thélène.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyre, E. Unramified cohomology of degree 3 and Noether’s problem. Invent. math. 171, 191–225 (2008). https://doi.org/10.1007/s00222-007-0080-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-007-0080-z

Keywords

Navigation