Skip to main content
Log in

Time decay for solutions of Schrödinger equations with rough and time-dependent potentials

  • Published:
Inventiones mathematicae Aims and scope

Abstract

In this paper we establish dispersive estimates for solutions to the linear Schrödinger equation in three dimensions

$$\frac{1}{i}\partial_t \psi - \triangle \psi + V\psi = 0,\qquad \psi(s)=f$$
(0.1)

where V(t,x) is a time-dependent potential that satisfies the conditions

$$\sup_{t}\|V(t,\cdot)\|_{L^{\frac{3}{2}}(\mathbb{R}^3)} + \sup_{x\in\mathbb{R}^3}\int_{\mathbb{R}^3} \int_{-\infty}^\infty\frac{|V(\hat{\tau},x)|}{|x-y|}\,d\tau\,dy < c_0.$$

Here c 0 is some small constant and \(V(\hat{\tau},x$) denotes the Fourier transform with respect to the first variable. We show that under these conditions (0.1) admits solutions ψ(·)∈L t (L 2 x (ℝ3))∩L 2 t (L 6 x (ℝ3)) for any fL 2(ℝ3) satisfying the dispersive inequality

$$\|\psi(t)\|_{\infty} \le C|t-s|^{-\frac32}\,\|f\|_1 \text{\ \ for all times $t,s$.}$$
(0.2)

For the case of time independent potentials V(x), (0.2) remains true if

$$\int_{\mathbb{R}^6} \frac{|V(x)|\;|V(y)|}{|x-y|^2} \, dxdy <(4\pi)^2\text{\ \ \ and\ \ \ }\|V\|_{\mathcal{K}}:=\sup_{x\in\mathbb{R}^3}\int_{\mathbb{R}^3} \frac{|V(y)|}{|x-y|}\,dy<4\pi.$$

We also establish the dispersive estimate with an ε-loss for large energies provided \(\|V\|_{\mathcal{K}}+\|V\|_2<\infty\).

Finally, we prove Strichartz estimates for the Schrödinger equations with potentials that decay like |x|-2-ε in dimensions n≥3, thus solving an open problem posed by Journé, Soffer, and Sogge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 2, 151–218 (1975)

    Google Scholar 

  2. Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Commun. Pure Appl. Math. 35, 209–273 (1982)

    MathSciNet  MATH  Google Scholar 

  3. Artbazar, G., Yajima, K.: The L p-continuity of wave operators for one dimensional Schrödinger operators. J. Math. Sci. Tokyo 7, 221–240 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Ben-Artzi, M., Klainerman, S.: Decay and regularity for the Schrödinger equation. J. Anal. Math. 58, 25–37 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential. Commun. Math. Phys. 204, 207–247 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential. J. Anal. Math. 77, 315–348 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993)

    MATH  Google Scholar 

  8. Burq, N., Gerard, P., Tzvetkov, N.: Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds. Journées “Equations aux Dérivées Partielles” (2001), Exp. No. 5

  9. Christ, M., Kiselev, A.: Maximal functions associated with filtrations. J. Funct. Anal. 179, 409–425 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davies, E.B.: Time-dependent scattering theory. Math. Ann. 210, 149–162 (1974)

    MATH  Google Scholar 

  11. Ikebe, T.: Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory. Arch. Ration. Mech. Anal. 5, 1–34 (1960)

    MATH  Google Scholar 

  12. Jensen, A.: Spectral properties of Schrödinger operators and time-decay of the wave functions results in L 2(R m), m≥5. Duke Math. J. 47, 57–80 (1980)

    MathSciNet  MATH  Google Scholar 

  13. Jensen, A.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in L 2(R 4). J. Math. Anal. Appl. 101, 397–422 (1984)

  14. Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46, 583–611 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Jensen, A., Nakamura, S.: L p and Besov estimates for Schrödinger Operators. Advanced Studies in Pure Math. 23. Spectral and Scattering Theory and Applications (1994), 187–209

  16. Journé, J.-L., Soffer, A., Sogge, C.D.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44, 573–604 (1991)

    MathSciNet  Google Scholar 

  17. Howland, J.S.: Born series and scattering by time-dependent potentaials. Rocky Mt. J. Math. 10, 521–531 (1980)

    MATH  Google Scholar 

  18. Howland, J.S.: Stationary scattering theory for time-dependent Hamiltonians. Math. Ann. 207, 315–335 (1974)

    MATH  Google Scholar 

  19. Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1965/1966)

    Google Scholar 

  20. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Kuroda, S.T.: Scattering theory for differential operators. I. Operator theory. J. Math. Soc. Japan 25, 75–104 (1973)

    MATH  Google Scholar 

  22. Kuroda, S.T.: Scattering theory for differential operators. II. Self-adjoint elliptic operators. J. Math. Soc. Japan 25, 222–234 (1973)

    Google Scholar 

  23. Planchon, F., Stalker, J., Tahvildar-Zadeh, S.: L p estimates for the wave equation with the inverse-square potential. Discrete Contin. Dyn. Syst. 9, 427–442 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Rauch, J.: Local decay of scattering solutions to Schrödinger’s equation. Commun. Math. Phys. 61, 149–168 (1978)

    MATH  Google Scholar 

  25. Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York, London: Academic Press [Harcourt Brace Jovanovich, Publishers] 1978

  26. Simon, B.: Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton Series in Physics. Princeton, N.J.: Princeton University Press 1971

  27. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. 7, 447–526 (1982)

    MathSciNet  MATH  Google Scholar 

  28. Smith, H., Sogge, C.: Global Strichartz estimates for nontrapping perturbations of the Laplacean. Commun. Partial Differ. Equations 25, 2171–2183 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Staffilani, G., Tataru, D.: Strichartz estimates for a Schrodinger operator with nonsmooth coefficients. Commun. Partial Differ. Equations 27, 1337–1372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stein, E.: Bejing lectures in harmonic analysis. Princeton University Press 1986

  31. Strichartz, R.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714 (1977)

    MATH  Google Scholar 

  32. Weder, R.: L p-L p estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170, 37–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yajima, K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)

    MathSciNet  MATH  Google Scholar 

  34. Yajima, K.: The W k,p-continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47, 551–581 (1995)

    MathSciNet  MATH  Google Scholar 

  35. Yajima, K.: L p-boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208, 125–152 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor Rodnianski or Wilhelm Schlag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodnianski, I., Schlag, W. Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. math. 155, 451–513 (2004). https://doi.org/10.1007/s00222-003-0325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-003-0325-4

Keywords

Navigation