Skip to main content

Advertisement

Log in

Abnormal morphology and subcortical projections to the medial geniculate in an animal model of autism

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Auditory dysfunction, including hypersensitivity and tinnitus, is a common symptom of autism spectrum disorder (ASD). Prenatal exposure to the antiseizure medication valproic acid (VPA) significantly increases the risk of ASD in humans and similar exposure is utilized as an animal model of ASD in rodents. Animals exposed to VPA in utero have abnormal activity in their auditory cortex in response to sounds, fewer neurons, abnormal neuronal morphology, reduced expression of calcium-binding proteins, and reduced ascending projections to the central nucleus of the inferior colliculus. Unfortunately, these previous studies of central auditory circuits neglect the medial geniculate (MG), which serves as an important auditory relay from the midbrain to the auditory cortex. Here, we examine the structure and connectivity of the medial geniculate (MG) in rats prenatally exposed to VPA. Our results indicate that VPA exposure results in significantly smaller and fewer neurons in the ventral and medial nuclei of the MG. Furthermore, injections of the retrograde tract tracer fluorogold (FG) in the MG result in significantly fewer FG+ neurons in the inferior colliculus, superior olivary complex, and ventral cochlear nucleus. Together, we interpret these findings to indicate that VPA exposure results in hypoplasia throughout the auditory circuits and that VPA has a differential impact on some long-range axonal projections from brainstem centers to the thalamus. Together, our findings support the widespread impact of VPA on neurons and sensory circuits in the developing brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ASD:

Autism spectrum disorder

AVCN:

Anterior ventral cochlear nucleus

Cb:

Cerebellum

CL:

Contralateral

CN:

Cochlear nucleus

CNIC:

Central nucleus of the inferior colliculus

D:

Dorsal

DNLL:

Dorsal nucleus of the lateral lemniscus

DMW :

Dorsal medial wedge

E:

Embryonic

FG:

Fluorogold

FG+ :

Fluorogold positive

IC:

Inferior colliculus

IL:

Ipsilateral

L:

Lateral

ll:

Lateral lemniscus

LSO:

Lateral superior olive

M:

Medial

MG:

Medial geniculate

mMG:

Medial nucleus of the medial geniculate

MNTB:

Medial nucleus of the trapezoid body

MSO:

Medial superior olive

NLL:

Nuclei of the lateral lemniscus

NTR:

Neurotrace red

P:

Postnatal

PB:

Phosphate buffer

SD:

Standard deviation

SOC:

Superior olivary complex

SPON:

Superior paraolivary nucleus

STN:

Spinal trigeminal nucleus

stt:

Spinal trigeminal tract

tz:

Trapezoid body

V:

Vestibular nerve

VCN:

Ventral cochlear nucleus

vMG:

Ventral nucleus of the medial geniculate

VPA:

Valproic acid

References

  • Allen DA (1988) Autistic spectrum disorders: clinical presentation in preschool children. J Child Neurol 3:48–56

    Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. American Psychiatric Association, Washington

    Google Scholar 

  • Anderson LA, Malmierca MS, Wallace MN, Palmer AR (2006) Evidence for a direct, short latency projection from the dorsal cochlear nucleus to the auditory thalamus in the guinea pig. Eur J Neurosci 24(2):491–498

    CAS  PubMed  Google Scholar 

  • Anomal RF, de Villers-Sidani E, Brandão JA, Diniz R, Costa MR, Romcy-Pereira RN (2015) Impaired processing in the primary auditory cortex of an animal model of autism. Front Syst Neurosci 1(9):158

    Google Scholar 

  • Aparicio MA, Saldaña E (2014) The dorsal tectal longitudinal column (TLCd): a second longitudinal column in the paramedian region of the midbrain tectum. Brain Struct Funct 219(2):607–630

    PubMed  Google Scholar 

  • Ardinger HH, Atkin JF, Blackston RD, Elsas LJ, Clarren SK, Livingstone S, Flannery DB, Pellock JM, Harrod MJ, Lammer EJ (1988) Verification of the fetal valproate syndrome phenotype. Am J Med Genet 29(1):171–185

    CAS  PubMed  Google Scholar 

  • Bajo VM, Merchán MA, López DE, Roullier EM (1993) Neuronal morphology and efferent projections of the dorsal nucleus of the lateral lemniscus of the cat. J Compar Neurol 334:241–262

    CAS  Google Scholar 

  • Berkley KJ (1980) Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys I. Ascending somatic sensory inputs to lateral diencephalon. J Comp Neurol 193:283–317

    CAS  PubMed  Google Scholar 

  • Berrebi A, Auxiliadora AM, Jin Y, Sloan DM, Gómez-Alvarez M, Bernardo FJ, Saldaña E (2012) Direct Projections from Multiple Nuclei of the Superior Olivary Complex to the Medial Geniculate Body of the Thalamus in the Rat. Abstract #250. Association for Research in Otolaryngology, 2012 Mid-Winter Meeting.

  • Blum PS, Day MI, Carpenter MB, Gilman S (1979) Thalamic components of the ascending vestibular system. Exp Neurol 54:587–603

    Google Scholar 

  • Bolton PF, Golding J, Emond A, Steer CD (2012) Autism spectrum disorder and autistic traits in the Avon Longitudinal Study of Parents and Children: precursors and early signs. J Am Acad Child Adolesc Psychiatry 51(3):249-260.e25

    PubMed  Google Scholar 

  • Bromley RL, Mawer GE, Briggs M, Cheyne C, Clayton-Smith J, García-Fiñana M, Kneen R, Lucas SB, Shallcross R, Baker GA, Liverpool and Manchester Neurodevelopment Group (2013) The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J Neurol Neurosurg Psychiatry 84(6):637–643

    PubMed  PubMed Central  Google Scholar 

  • CDC.gov (2019). https://www.cdc.gov/ncbddd/autism/index.html. Accessed 30 Jan 2019

  • Chelini G, Zerbi V, Cimino L et al (2019) Aberrant Somatosensory Processing and connectivity in mice lacking Engrailed-2. J Neurosci 39(8):1525–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen J, Gronborg TK, Sorensen MJ (2013) Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309(16):1696–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danesh AA, Lang D, Kaf W, Andreassen WD, Scott J, Eshraghi AA (2015) Tinnitus and hyperacusis in autism spectrum disorders with emphasis on high functioning individuals diagnosed with Asperger’s Syndrome. Int J Pediatr Otorhinolaryngol 79(10):1683–1688

    PubMed  Google Scholar 

  • DiLiberti JH, Farndon PA, Dennis NR, Curry CJ (1984) The fetal valproate syndrome. Am J Med Genet 19(3):473–481

    CAS  PubMed  Google Scholar 

  • Dubiel A, Kulesza RJ Jr (2016) Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem. Neuroscience 324:511–523

    CAS  PubMed  Google Scholar 

  • Engineer CT, Centanni TM, Im KW, Borland MS, Moreno NA, Carraway RS, Wilson LG, Kilgard MP (2014) Degraded auditory processing in a rat model of autism limits the speech representation in non-primary auditory cortex. Dev Neurobiol 74(10):972–986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foran L, Blackburn K, Kulesza RJ (2017) Auditory hindbrain atrophy and anomalous calcium binding protein expression after neonatal exposure to monosodium glutamate. Neuroscience 344:406–417

    CAS  PubMed  Google Scholar 

  • Gandal MJ, Edgar JC, Ehrlichman RS, Mehta M, Roberts TP, Siegel SJ (2010) Validating γ oscillations and delayed auditory responses as translational biomarkers of autism. Biol Psychiatry 68(12):1100–1106

    PubMed  PubMed Central  Google Scholar 

  • Gomes E, Pedroso FS, Wagner MB (2008) Auditory hypersensitivity in the autistic spectrum disorder. Pro Fono 20(4):279–284

    PubMed  Google Scholar 

  • González-Hernández TH, Galindo-Mireles D, Castaneyra-Perdomo A, Ferres-Torres R (1991) Divergent projections of projecting neurons of the inferior colliculus to the medial geniculate body and the contralateral inferior colliculus in the rat. Hear Res 52:17–21

    PubMed  Google Scholar 

  • Graham J (1977) An autoradiographic study of the efferent connections of the superior colliculus in the cat. J Comp Neurol 173:629–654

    CAS  PubMed  Google Scholar 

  • Greenspan SI, Wieder S (1997) Developmental patterns and outcomes in infants and children with disorders in relating and communicating: a chart review of 200 cases of children with autistic spectrum diagnoses. J Dev Learn Disord 1:87–141

    Google Scholar 

  • Güveli BT, Rosti RÖ, Güzeltaş A, Tuna EB, Ataklı D, Sencer S, Yekeler E, Kayserili H, Dirican A, Bebek N, Baykan B, Gökyiğit A, Gürses C (2017) Teratogenicity of antiepileptic drugs. Clin Psychopharmacol Neurosci 15(1):19–27

    PubMed  PubMed Central  Google Scholar 

  • Hou Q, Wang Y, Li Y, Chen D, Yang F, Wang S (2018) A developmental study of abnormal behaviors and altered gabaergic signaling in the vpa-treated rat model of autism. Front Behav Neurosci 12:182

    PubMed  PubMed Central  Google Scholar 

  • Ito T, Oliver DL (2010) Origins of glutamatergic terminals in the inferior colliculus identified by retrograde transport and expression of VGLUT1 and VGLUT2 genes. Front Neuroanat 4:135

    PubMed  PubMed Central  Google Scholar 

  • Kelly JB, Buckthought AD, Kidd SA (1998) Monaural and binaural response properties of single neurons in the rat’s dorsal nucleus of the lateral lemniscus. Hear Res 122(1–2):25–40

    CAS  PubMed  Google Scholar 

  • Kelly JB, van Adel BA, Ito M (2009) Anatomical projections of the nuclei of the lateral lemniscus in the albino rat (Rattus norvegicus). J Comp Neurol 512(4):573–593

    PubMed  Google Scholar 

  • Kolodny T, Schallmo MP, Gerdts J, Edden RAE, Bernier RA, Murray SO (2020) Concentrations of cortical GABA and glutamate in young adults with autism spectrum disorder. Autism Res. https://doi.org/10.1002/aur.2300

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondo HM, Lin IF (2020) Excitation-inhibition balance and auditory multistable perception are correlated with autistic traits and schizotypy in a non-clinical population. Sci Rep 10(1):8171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konigsmark BW (1970) Methods for counting of neurons. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Heidelberg, pp 315–338

    Google Scholar 

  • Koren G, Nava-Ocampo AA, Moretti ME, Sussman R, Nulman I (2006) Major malformations with valproic acid. Can Fam Physician 52:441–447

    PubMed  PubMed Central  Google Scholar 

  • Kulesza RJ Jr (2007) Cytoarchitecture of the human superior olivary complex: medial and lateral superior olive. Hear Res 225(1–2):80–90

    PubMed  Google Scholar 

  • Kulesza RJ, Berrebi AS (2000) Superior paraolivary nucleus of the rat is a gabaergic nucleus. J Assoc Res Otolaryngol 4:255–269

    Google Scholar 

  • Kulesza RJ, Mangunay K (2008) Morphological features of the medial superior olive in autism. Brain Res 1200:132–137

    CAS  PubMed  Google Scholar 

  • Kulesza RJ, Viñuela A, Saldaña E, Berrebi AS (2002) Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat. Hear Res 168(1–2):12–24

    PubMed  Google Scholar 

  • Kulesza RJ, Lukose R, Stevens LV (2011) Malformation of the human superior olive in autistic spectrum disorders. Brain Res 1367:360–371

    CAS  PubMed  Google Scholar 

  • Kumamaru E, Egashira Y, Takenaka R, Takamori S (2014) Valproic acid selectively suppresses the formation of inhibitory synapses in cultured cortical neurons. Neurosci Lett 569:142–147

    CAS  PubMed  Google Scholar 

  • LeDoux JE, Ruggiero DA, Forest R, Stornetta R, Reis DJ (1987) Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J Compar Neurol 264:123–146

    CAS  Google Scholar 

  • Lukose R, Schmidt E, Wolski TP Jr, Murawski NJ, Kulesza RJ (2011) Malformation of the superior olivary complex in an animal model of autism. Brain Res 1398:102–112

    CAS  PubMed  Google Scholar 

  • Lukose R, Brown K, Barber CM, Kulesza RJ (2013) Quantification of the stapedial reflex reveals delayed responses in autism. Autism Res 6(5):344–353

    PubMed  Google Scholar 

  • Lukose R, Beebe K, Kulesza RJ (2015) Organization of the human superior olivary complex in 15q duplication syndromes and autism spectrum disorders. Neuroscience 286:216–230

    CAS  PubMed  Google Scholar 

  • Mabunga DF, Gonzales EL, Kim JW, Kim KC, Shin CY (2015) Exploring the validity of valproic acid animal model of autism. Exp Neurobiol 24(4):285–300

    PubMed  PubMed Central  Google Scholar 

  • Main S, Kulesza RJ (2017) Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia. Neuroscience 340:34–47

    CAS  PubMed  Google Scholar 

  • Malmierca M (2015) Auditory system. In: Paxinos G (ed) The rat nervous system. Academic Press, New York

    Google Scholar 

  • Malmierca MS, Merchan MA, Henkel CK, Oliver DL (2002) Direct projections from cochlear nuclear complex to auditory thalamus in the rat. J Neurosci 22:10891–10897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour Y, Mangold S, Chosky D, Kulesza RJ (2019a) Auditory midbrain hypoplasia and dysmorphology after prenatal valproic acid exposure. Neuroscience 396:79–93

    CAS  PubMed  Google Scholar 

  • Mansour Y, Altaher W, Kulesza RJ Jr (2019b) Characterization of the human central nucleus of the inferior colliculus. Hear Res 377:234–246

    PubMed  Google Scholar 

  • Mansour Y, Kulesza R (2020) Three dimensional reconstructions of the superior olivary complex from children with autism spectrum disorder. Hear Res. 393:107974

    PubMed  Google Scholar 

  • Mansour Y, Ahmed S, Kulesza RJ (2019c) Hypoplasia and reduced ascending axonal projections to the auditory thalamus after in utero exposure to valproic acid. Tom Ridge Environmental Center Research Symposium, Erie

    Google Scholar 

  • Márquez-Legorreta E, Horta-Júnior AJ, Berrebi AS, Saldaña E (2016) Organization of the zone of transition between the pretectum and the thalamus, with emphasis on the pretectothalamic lamina. Front Neuroanat 10:82

    PubMed  PubMed Central  Google Scholar 

  • Mellott JG, Foster NL, Ohl AP, Schofield BR (2014) Excitatory and inhibitory projections in parallel pathways from the inferior colliculus to the auditorythalamus. Front Neuroanat. 8:124

    PubMed  PubMed Central  Google Scholar 

  • Moon BS, Lu W, Park HJ (2018) Valproic acid promotes the neuronal differentiation of spiral ganglion neural stem cells with robust axonal growth. Biochem Biophys Res Commun 503(4):2728–2735

    CAS  PubMed  Google Scholar 

  • Moore SJ, Turnpenny P, Quinn A, Glover S, Lloyd DJ, Montgomery T, Dean JC (2000) A clinical study of 57 children with fetal anticonvulsant syndromes. J Med Genet 37(7):489–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nair A, Treiber JM, Shukla DK, Shih P, Müller RA (2013) Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity. Brain 36(6):1942–1955

    Google Scholar 

  • O’Connor K (2012) Auditory processing in autism spectrum disorder: a review. Neurosci Biobehav Rev 36(2):836–854

    CAS  PubMed  Google Scholar 

  • Olexová L, Štefánik P, Kršková L (2016) Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats. An animal model of autism. Neurosci Lett 629:9–14

    PubMed  Google Scholar 

  • Oliver DL (1984) Neuron types in the central nucleus of the inferior coIIicuius that project to the mediai geniculate body. Neuroscience 11:409–424

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, London

    Google Scholar 

  • Peruzzi D, Bartlett E, Smith PH, Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17:3766–3777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasalam AD, Hailey H, Williams JH, Moore SJ, Turnpenny PD, Lloyd DJ, Dean JC (2005) Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol 47(8):551–555

    CAS  PubMed  Google Scholar 

  • Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J (1996) Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 370(2):247–261

    CAS  PubMed  Google Scholar 

  • Roucoux-Hanus M, Boisacq-Schepens N (1977) Ascending vestibular projections: further results at cortical and thalamic levels in the cat. Expl Brain Res 29:283–292

    CAS  Google Scholar 

  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform 18(1):529

    Google Scholar 

  • Ruby K, Falvey K, Kulesza RJ (2015) Abnormal neuronal morphology and neurochemistry in the auditory brainstem of Fmr1 knockout rats. Neuroscience. 303:285–98

    CAS  PubMed  Google Scholar 

  • Saldaña E, Aparicio MA, Fuentes-Santamaría V, Berrebi AS (2009) Connections of the superior paraolivary nucleus of the rat: projections to the inferior colliculus. Neuroscience 163(1):372–387

    PubMed  PubMed Central  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    CAS  PubMed  Google Scholar 

  • Schneider T, Roman A, Basta-Kaim A, Kubera M, Budziszewska B, Schneider K, Przewłocki R (2008) Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33(6):728–740

    CAS  PubMed  Google Scholar 

  • Schofield BR, Mellott JG, Motts SD (2014a) Subcollicular projections to the auditory thalamus and collateral projections to the inferior colliculus. Front Neuroanat 8:70

    PubMed  PubMed Central  Google Scholar 

  • Schofield BR, Motts SD, Mellott JG, Foster NL (2014b) Projections from the dorsal and ventral cochlear nuclei to the medial geniculate body. Front Neuroanat 8:10

    PubMed  PubMed Central  Google Scholar 

  • Smith A, Storti S, Lukose R, Kulesza RJ Jr (2019) Structural and functional aberrations of the auditory brainstem in autism spectrum disorder. J Am Osteopath Assoc 119(1):41–50

    PubMed  Google Scholar 

  • Strominger NL (1973) The origins, course and distribution of the dorsal and intermediate acoustic striae in the rhesus monkey. J Comp Neurol 147:209–233

    CAS  PubMed  Google Scholar 

  • Strominger NL, Strominger AI (1971) Ascending brain stem projections of the anteroventral cochlear nucleus in the rhesus monkey. J Comp Neurol 143:217–242

    CAS  PubMed  Google Scholar 

  • Tamura R, Kitamura H, Endo T, Hasegawa N, Someya T (2010) Reduced thalamic volume observed across different subgroups of autism spectrum disorders. Psychiatry Res 184(3):186–188

    PubMed  Google Scholar 

  • Tang S, Powell EM, Zhu W, Lo FS, Erzurumlu RS, Xu S (2019) Altered forebrain functional connectivity and neurotransmission in a kinase-inactive met mouse model of autism. Mol Imaging 18:1536012118821034

    PubMed  PubMed Central  Google Scholar 

  • Thompson CK, Brenowitz EA (2005) Seasonal change in neuron size and spacing but not neuronal recruitment in a basal ganglia nucleus in the avian song control system. J Comp Neurol 481(3):276–283

    PubMed  Google Scholar 

  • Tomasi D, Volkow ND (2019) Reduced local and increased long-range functional connectivity of the thalamus in autism spectrum disorder. Cereb Cortex 29(2):573–585. https://doi.org/10.1093/cercor/bhx340

    Article  PubMed  Google Scholar 

  • Tomchek SD, Dunn W (2007) Sensory processing in children with and without autism: a comparative study using the short sensory profile. Am J Occup Ther 61(2):190–200

    PubMed  Google Scholar 

  • Tsatsanis KD, Rourke BP, Klin A, Volkmar FR, Cicchetti D, Schultz RT (2003) Reduced thalamic volume in high-functioning individuals with autism. Biol Psychiatry 53(2):121–129

    PubMed  Google Scholar 

  • Vinuela A, Aparicio MA, Berrebi AS, Saldaña E (2011) Connections of the Superior paraolivary nucleus of the rat: II Reciprocal connections with the tectal longitudinal column. Front Neuroanat 5:1

    PubMed  PubMed Central  Google Scholar 

  • Wei R, Li Q, Lam S, Leung J, Cheung C, Zhang X, Sham PC, Chua SE, McAlonan GM (2016) A single low dose of valproic acid in late prenatal life alters postnatal behavior and glutamic acid decarboxylase levels in the mouse. Behav Brain Res 314:190–198

    CAS  PubMed  Google Scholar 

  • Williams G, King J, Cunningham M, Stephan M, Kerr B, Hersh JH (2001) Fetal valproate syndrome and autism: additional evidence of an association. Dev Med Child Neurol 43(3):202–206

    CAS  PubMed  Google Scholar 

  • Wing L (1997) The autistic spectrum. Lancet 350:1761–1766

    CAS  PubMed  Google Scholar 

  • Win-Shwe TT, Nway NC, Imai M, Lwin TT, Mar O, Watanabe H (2018) Social behavior, neuroimmune markers and glutamic acid decarboxylase levels in a rat model of valproic acid-induced autism. J Toxicol Sci 43(11):631–643

    CAS  PubMed  Google Scholar 

  • Yip J, Soghomonian JJ, Blatt GJ (2007) Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 113(5):559–568

    CAS  PubMed  Google Scholar 

  • Zhao H, Wang Q, Yan T et al (2019) Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl Psychiatry 9(1):267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zieminska E, Toczylowska B, Diamandakis D, Hilgier W, Filipkowski RK, Polowy R, Orzel J, Gorka M, Lazarewicz JW (2018) Glutamate, glutamine and GABA levels in rat brain measured using MRS, HPLC and NMR methods in study of two models of autism. Front Mol Neurosci 11:418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman R, Patel R, Smith A, Pasos J, Kulesza RJ (2018) Repeated prenatal exposure to valproic acid results in auditory brainstem hypoplasia and reduced calcium binding protein immunolabeling. Neuroscience 377:53–68

    CAS  PubMed  Google Scholar 

  • Zimmerman R, Smith A, Fech T, Mansour Y, Kulesza RJ Jr (2020) In utero exposure to valproic acid disrupts ascending projections to the central nucleus of the inferior colliculus from the auditory brainstem. Exp Brain Res 238(3):551–563. https://doi.org/10.1007/s00221-020-05729-7

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Randy Kulesza designed the study. Stereotaxic injections, perfusions, and tissue processing were done by Randy Kulesza and Yusra Mansour. Neuron counts and analysis of neuron morphology were done by Yusra Mansour and Syed Ahmed. The 3D model was made by Yusra Mansour. All authors have contributed to data analysis. The first draft of the manuscript was written by Randy Kulesza, and all authors have contributed to revisions and editing of the manuscript. Randy Kulesza and Yusra Mansour constructed all figures. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Randy Kulesza.

Ethics declarations

Conflict of interest

The authors declare they have no affiliations with or involvement in any organization or group with any financial interest in the subject matter or content in this manuscript and accordingly declare no conflicts of interest.

Additional information

Communicated by Bill J Yates.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, Y., Ahmed, S.N. & Kulesza, R. Abnormal morphology and subcortical projections to the medial geniculate in an animal model of autism. Exp Brain Res 239, 381–400 (2021). https://doi.org/10.1007/s00221-020-05982-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05982-w

Keywords

Navigation