Skip to main content
Log in

Visual salience of the stop-signal affects movement suppression process

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We investigated how the ability to suppress an impending movement is affected by the visual salience of the stop-signal in a reaching countermanding task. We found that when the stop-signal was easy to detect, stop performance was better than when the stop-signal was difficult to detect. In an exploratory analysis, we also found that the change in salience of the stop-signal can have an effect on the speed of response in trials following the stop-signal. This effect occurred together with strategic slowing down after an error in inhibiting was committed and together with a repetition priming effect due to the stop-signal presented in the previous trial. Our results suggest the need to investigate more in depth the afferent processing stage of the inhibitory control of movement and how task demands can affect its functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong IT, Munoz DP (2003) Inhibitory control of eye movements during oculomotor countermanding in adults with attention-deficit hyperactivity disorder. Exp Brain Res 152:444–452

    CAS  PubMed  Google Scholar 

  • Asrress KN, Carpenter RH (2001) Saccadic countermanding: a comparison of central and peripheral stop signals. Vis Res 41:2645–2651

    CAS  PubMed  Google Scholar 

  • Band GP, Van der Molen MW, Logan GD (2003) Horse-race model simulations of the stop-signal procedure. Acta Psychol 112:105–142

    Google Scholar 

  • Bari A, Robbins TW (2013) Inhibition and impulsivity: behavioral and neural basis of response control. Progr Neurobiol 108:44–79

    Google Scholar 

  • Bekker EM, Overtoom CCE, Kooij JJS, Buitelaar JK, Verbaten MN, Kenemans JL (2005) Disentangling deficits in adults with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 62:1129–1136

    PubMed  Google Scholar 

  • Bissett PG, Logan GD (2011) Balancing cognitive demands: control adjustments in the stop-signal paradigm. J Exp Psychol Learn Mem Cogn 37:392–404

    PubMed  PubMed Central  Google Scholar 

  • Bissett PG, Logan GD (2012) Post-stop-signal adjustments: inhibition improves subsequent inhibition. J Exp Psychol Learn Mem Cogn 38:955–966

    PubMed  Google Scholar 

  • Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108:624–652

    CAS  PubMed  Google Scholar 

  • Boucher L, Palmeri TJ, Logan GD, Schall JD (2007) Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol Rev 114:376–397

    PubMed  Google Scholar 

  • Brunamonti E, Ferraina S, Paré M (2012) Controlled movement processing: evidence for a common inhibitory control of finger, wrist, and arm movements. Neuroscience 215:69–78

    CAS  PubMed  Google Scholar 

  • Cabel DW, Armstrong IT, Reingold E, Munoz DP (2000) Control of saccade initiation in a countermanding task using visual and auditory stop signals. Exp Brain Res 133:431–441

    CAS  PubMed  Google Scholar 

  • Camalier CR, Gotler A, Murthy A, Thompson KG, Logan GD, Palmeri TJ, Schall JD (2007) Dynamics of saccade target selection: race model analysis of double step and search step saccade production in human and macaque. Vis Res 47:2187–2211

    CAS  PubMed  Google Scholar 

  • Cavina-Pratesi C, Bricolo E, Prior M, Marzi CA (2001) Redundancy gain in the stop-signal paradigm: implications for the locus of coactivation in simple reaction time. J Exp Psychol Hum Percept Perform 27:932–941

    CAS  PubMed  Google Scholar 

  • Chamberlain SR, Blackwell AD, Fineberg NA, Robbins TW, Sahakian BJ (2005) The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev 29:399–419

    CAS  PubMed  Google Scholar 

  • Chambers CD, Bellgrove MA, Gould IC, English T, Garavan H, McNaught E, Kamke M, Mattingley JB (2007) Dissociable mechanisms of cognitive control in prefrontal and premotor cortex. J Neurophysiol 98:3638–3647

    PubMed  Google Scholar 

  • Dutilh G, Vandekerckhove J, Forstmann BU, Keuleers E, Brysbaert M, Wagenmakers EJ (2012) Testing theories of post-error slowing. Atten Percept Psychophys 74:454–465

    PubMed  Google Scholar 

  • Elchlepp H, Lavric A, Chambers CD, Verbruggen F (2016) Proactive inhibitory control: a general biasing account. Cogn Psychol 86:27–61

    PubMed  PubMed Central  Google Scholar 

  • Emeric EE, Brown JW, Boucher L, Carpenter RH, Hanes DP, Harris R, Logan GD, Mashru RN, Paré M, Pouge P, Stuphorn V, Taylor TL, Schall JD (2007) Influence of history on saccade countermanding performance in humans and macaque monkeys. Vis Res 47:35–49

    PubMed  Google Scholar 

  • Enticott PG, Bradshaw JL, Bellgrove MA, Upton DJ, Ogloff JRP (2009) Stop task after-effects: the extent of slowing during the preparation and execution of movement. Exp Psychol 56:247–251

    PubMed  Google Scholar 

  • Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    PubMed  Google Scholar 

  • Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149–1160

    Google Scholar 

  • Gauggel S, Rieger M, Feghoff TA (2004) Inhibition of ongoing responses in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:539–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes ME, Fulham WR, Johnston PJ, Michie PT (2012) Stop-signal response inhibition in schizophrenia: behavioural, event-related potential and functional neuroimaging data. Biol Psychol 89:220–231

    PubMed  Google Scholar 

  • Jahfari S, Ridderinkhof KR, Scholte HS (2013) Spatial frequency information modulates response inhibition and decision-making processes. PLoS One 8:76467

    Google Scholar 

  • Langford ZD, Krebs RM, Talsma D, Woldorff MG, Boehler CN (2016) Strategic down-regulation of attentional resources as a mechanism of proactive response inhibition. Eur J Neurosci 44:2095–2103

    PubMed  PubMed Central  Google Scholar 

  • Liddle EB, Scerif G, Hollis CP, Batty MJ, Groom MJ, Liotti M, Liddle PF (2009) Looking before you leap: a theory of motivated control of action. Cognition 112:141–158

    PubMed  PubMed Central  Google Scholar 

  • Lipszyc J, Schachar R (2010) Inhibitory control and psychopathology: a meta-analysis of studies using the stop signal task. J Int Neuropsychol Soc 16:1064–1076

    PubMed  Google Scholar 

  • Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91:295–327

    Google Scholar 

  • Logan GD, Yamaguchi M, Schall JD, Palmeri TJ (2015) Inhibitory control in mind and brain 2.0: blocked-input models of saccadic countermanding. Psychol Rev 122:115–147

    PubMed  PubMed Central  Google Scholar 

  • Lúcio PS, Salum GA, Rohde LA, Swardfager W, Gadelha A, Vandekerckhove J, Pan PM, Polanczyk GV, do Rosário MC, Jackowski AP, Mari JJ, Cogo-Moreira H (2016) Poor stimulus discriminability as a common neuropsychological deficit between ADHD and reading ability in young children: a moderated mediation model. Psychol Med 47:255–266

    PubMed  Google Scholar 

  • Matzke D, Love J, Heathcote A (2017) A Bayesian approach for estimating the probability of trigger failures in the stop-signal paradigm. Behav Res Methods 49:267–281

    PubMed  Google Scholar 

  • Mione V, Canterini S, Brunamonti E, Pani P, Donno F, Fiorenza MT, Ferraina S (2015) Both the COMT Val158Met single-nucleotide polymorphism and sex-dependent differences influence response inhibition. Front Behav Neurosci 9:127

    PubMed  PubMed Central  Google Scholar 

  • Mirabella G, Pani P, Paré M, Ferraina S (2006) Inhibitory control of reaching movements in humans. Exp Brain Res 174:240–255

    PubMed  Google Scholar 

  • Mirabella G, Pani P, Ferraina S (2008) Context influences on the preparation and execution of reaching movements. Cogn Neuropsychol 25:996–1010

    PubMed  Google Scholar 

  • Mirabella G, Pani P, Ferraina S (2009) The presence of visual gap affects the duration of stopping process. Exp Brain Res 192:199–209

    PubMed  Google Scholar 

  • Mirabella G, Pani P, Ferraina S (2011) Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J Neurophysiol 106:1454–1466

    CAS  PubMed  Google Scholar 

  • Morein-Zamir S, Kingstone A (2006) Fixation offset and stop signal intensity effects on saccadic countermanding: a crossmodal investigation. Exp Brain Res 175:453–462

    PubMed  Google Scholar 

  • Nelson MJ, Boucher L, Logan GD, Palmeri TJ, Schall JD (2010) Non independent and non stationary response times in stopping and stepping saccade tasks. Atten Percept Psychophys 72:1913–1929

    PubMed  PubMed Central  Google Scholar 

  • Notebaert W, Houtman F, Opstal FV, Gevers W, Fias W, Verguts T (2009) Post-error slowing: an orienting account. Cognition 111:275–279

    PubMed  Google Scholar 

  • Oosterlaan J, Logan GD, Sergeant JA (1998) Response inhibition in AD/HD, CD, comorbid AD/HD + CD, anxious, and control children: a meta-analysis of studies with the stop task. J Child Psychol Psychiatry 39:411–425

    CAS  PubMed  Google Scholar 

  • Osman A, Kornblum S, Meyer DE (1986) The point of no return in choice reaction time: controlled and ballistic stages of response preparation. J Exp Psychol Hum Percept Perform 12:243–258

    CAS  PubMed  Google Scholar 

  • Osman A, Kornblum S, Meyer DE (1990) Does motor programming necessitate response execution? J Exp Psychol Hum Percept Perform 16:183–198

    CAS  PubMed  Google Scholar 

  • Pani P, Menghini D, Napolitano C, Calcagni M, Armando M, Sergeant JA, Vicari S (2013) Proactive and reactive control of movement are differently affected in attention deficit hyperactivity disorder children. Res Dev Disabil 34:3104–3111

    CAS  PubMed  Google Scholar 

  • Pouget P, Logan GD, Palmeri TJ, Boucher L, Paré M, Schall JD (2011) Neural basis of adaptive response time adjustment during saccade countermanding. J Neurosci 31:12604–12612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rieger M, Gauggel S (1999) Inhibitory after-effects in the stop signal paradigm. Brit J Psychol 90:509–518

    Google Scholar 

  • Salinas E, Stanford TR (2013) The countermanding task revisited: fast stimulus detection is a key determinant of psychophysical performance. J Neurosci 33:5668–5685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salum GA, Sergeant J, Sonuga-Barke E, Vandekerckhove J, Gadelha A, Pan PM, Moriyama TS, Graeff-Martins AS, de Alvarenga PG, do Rosário MC, Manfro GG, Polanczyk G, Rohde LA (2014) Specificity of basic information processing and inhibitory control in attention deficit hyperactivity disorder. Psychol Med 44:617–631

    CAS  PubMed  Google Scholar 

  • Sanders AF, Wertheim AH (1973) The relation between physical stimulus properties and the effect of foreperiod duration on reaction time. Q J Exp Psychol 25:201–206

    CAS  PubMed  Google Scholar 

  • Schachar RJ, Chen S, Logan GD, Ornstein TJ, Crosbie J, Ickowicz A, Pakulak A (2004) Evidence for an error monitoring deficit in attention deficit hyperactivity disorder. J Abnorm Child Psychol 32:285–293

    PubMed  Google Scholar 

  • Stevenson SA, Elsley JK, Corneil BD (2009) A “gap effect” on stop signal reaction times in a human saccadic countermanding task. J Neurophysiol 101:580–590

    PubMed  Google Scholar 

  • Thakkar KN, Schall JD, Boucher L, Logan GD, Park S (2011) Response inhibition and response monitoring in a saccadic countermanding task in schizophrenia. Biol Psychiatry 69:55–62

    PubMed  Google Scholar 

  • van den Wildenberg WP, van der Molen MW (2004) Additive factors analysis of inhibitory processing in the stop-signal paradigm. Brain Cogn 56:253–266

    PubMed  Google Scholar 

  • van der Schoot M, Licht R, Horsley TM, Sergeant JA (2005) Effects of stop signal modality, stop signal intensity and tracking method on inhibitory performance as determined by use of the stop signal paradigm. Scand J Psychol 46:331–341

    PubMed  Google Scholar 

  • van Gaal S, Ridderinkhof KR, van den Wildenberg WP, Lamme VA (2009) Dissociating consciousness from inhibitory control: evidence for unconsciously triggered response inhibition in the stop-signal task. J Exp Psychol Hum Percept Perform 35:1129–1139

    PubMed  Google Scholar 

  • Verbruggen F, Logan GD (2008) Response inhibition in the stop-signal paradigm. Trends Cogn Sci 12:418–424

    PubMed  PubMed Central  Google Scholar 

  • Verbruggen F, Logan GD (2009a) Models of response inhibition in the stop-signal and stop-change paradigms. Neurosci Biobehav Rev 33:647–661

    PubMed  Google Scholar 

  • Verbruggen F, Logan GD (2009b) Proactive adjustments of response strategies in the stop-signal paradigm. J Exp Psychol Hum Percept Perform 35:835–854

    PubMed  PubMed Central  Google Scholar 

  • Verbruggen F, Logan GD (2015) Evidence for capacity sharing when stopping. Cognition 142:81–95

    PubMed  PubMed Central  Google Scholar 

  • Verbruggen F, Liefooghe B, Vandierendonck A (2004) The interaction between stop signal inhibition and distractor interference in the flanker and Stroop task. Acta Psychol 116:21–37

    Google Scholar 

  • Verbruggen F, Logan GD, Liefooghe B, Vandierendonck A (2008) Short-term aftereffects of response inhibition: repetition priming or between-trial control adjustments? J Exp Psychol Hum Percept Perform 34:413–426

    PubMed  Google Scholar 

  • Verbruggen F, Chambers CD, Logan GD (2013) Fictitious inhibitory differences: how skewness and slowing distort the estimation of stopping latencies. Psychol Sci 24:352–362

    PubMed  PubMed Central  Google Scholar 

  • Verbruggen F, McLaren IPL, Chambers CD (2014a) Banishing the control homunculi in studies of action control and behavior change. Perspect Psychol Sci 9:497–524

    PubMed  PubMed Central  Google Scholar 

  • Verbruggen F, Stevens T, Chambers CD (2014b) Proactive and reactive stopping when distracted: an attentional account. J Exp Psychol Hum Percept Perform 40:1295–1300

    PubMed  PubMed Central  Google Scholar 

  • Wardak C, Ramanoël S, Guipponi O, Boulinguez P, Ben Hamed S (2012) Proactive inhibitory control varies with task context. Eur J Neurosci 36:3568–3579

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Francesco Fabbrini and Franco Giarrocco for their help in the initial phases of the experiment. We thank F. Verbruggen and two other anonymous referees for their useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo Pani.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

All experiments were conducted under the written consent and the understanding of each participant. The experimental procedures complied with the University local ethical committee and the Code of Ethics of the World Medical Association (Declaration of Helsinki, 1964).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montanari, R., Giamundo, M., Brunamonti, E. et al. Visual salience of the stop-signal affects movement suppression process. Exp Brain Res 235, 2203–2214 (2017). https://doi.org/10.1007/s00221-017-4961-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-4961-0

Keywords

Navigation