Skip to main content
Log in

Dynamics for QCD on an Infinite Lattice

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the existence of the dynamics automorphism group for Hamiltonian QCD on an infinite lattice in \({{\mathbb{R}}^3}\), and this is done in a C*-algebraic context. The existence of ground states is also obtained. Starting with the finite lattice model for Hamiltonian QCD developed by Kijowski, Rudolph (cf. J Math Phys 43:1796–1808 [15], J Math Phys 46:032303 [16]), we state its field algebra and a natural representation. We then generalize this representation to the infinite lattice, and construct a Hilbert space which has represented on it all the local algebras (i.e., kinematics algebras associated with finite connected sublattices) equipped with the correct graded commutation relations. On a suitably large C*-algebra acting on this Hilbert space, and containing all the local algebras, we prove that there is a one parameter automorphism group, which is the pointwise norm limit of the local time evolutions along a sequence of finite sublattices, increasing to the full lattice. This is our global time evolution. We then take as our field algebra the C*-algebra generated by all the orbits of the local algebras w.r.t. the global time evolution. Thus the time evolution creates the field algebra. The time evolution is strongly continuous on this choice of field algebra, though not on the original larger C*-algebra. We define the gauge transformations, explain how to enforce the Gauss law constraint, show that the dynamics automorphism group descends to the algebra of physical observables and prove that gauge invariant ground states exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blackadar B.: Operator Algebras. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  2. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1. Springer, New York (1987)

    Book  MATH  Google Scholar 

  3. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 2. Equilibrium States, Models in Quantum Statistical Mechanics. Springer, New York (1981)

    MATH  Google Scholar 

  4. Bruening J., Heintze E.: Representations of compact Lie groups and elliptic operators. Invent. Math. 50, 169–203 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Buchholz D., Grundling H.: The resolvent algebra: a new approach to canonical quantum systems. J. Funct. Anal. 254, 2725–2779 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dixmier J.: C*-Algebras. North Holland Publishing Company, Amsterdam (1977)

    MATH  Google Scholar 

  7. Fang, Y.-Z., Luo, X.-Q.: Hamiltonian lattice QCD with Wilson fermions at strong coupling. Int. J. Mod. Phys. A16, 4499-4510 (2001). arXiv:hep-lat/0108025v1

  8. Grundling H., Neeb K.-H.: Full regularity for a C*-algebra of the canonical commutation relations. Rev. Math. Phys. 21, 587–613 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grundling H., Rudolph G.: QCD on an infinite lattice. Commun. Math. Phys 318, 717–766 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Grundling H.: Quantum constraints. Rep. Math. Phys 57, 97–120 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Grundling H., Neeb K.-H.: Crossed products of C*-algebras for singular actions. J. Funct. Anal 266, 5199–5269 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huebschmann J., Rudolph G., Schmidt M.: A gauge model for quantum mechanics on a stratified space. Commun. Math. Phys 286, 459–494 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Jarvis P.D., Kijowski J., Rudolph G.: On the structure of the observable algebra of QCD on the lattice. J. Phys. A: Math. Gen 38, 5359–5377 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kadison R.V., Ringrose J.R.: Fundamentals of the Theory of Operator Algebras II. Academic Press, New York (1983)

    MATH  Google Scholar 

  15. Kijowski J., Rudolph G.: On the Gauss law and global charge for quantum chromodynamics. J. Math. Phys 43, 1796–1808 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Kijowski J., Rudolph G.: Charge superselection sectors for QCD on the lattice. J. Math. Phys. 46, 032303 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kogut J., Susskind L.: Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11, 395–408 (1975)

    Article  ADS  Google Scholar 

  18. Kogut, J.: Three Lectures on Lattice Gauge Theory. CLNS-347 (1976), Lecture Series Presented at the International Summer School, McGill University, June 21–26, 1976. In: Satz H. (ed.) Many Degrees of Freedom in Particle Theory, vol. 31. NATO Advanced Study Institutes Series, Springer (1978)

  19. Lawson H.B., Michelson M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)

    Google Scholar 

  20. Nachtergaele, B., Sims, R.: Lieb–Robinson bounds in quantum many-body physics. Contemp. Math. 529, p. 141, Amer. Math. Soc., Providence, RI: (2010). This published argument contains some errors and omissions. A corrected version of the argument is in [21]

  21. Nachtergaele, B., Sims, R.: On the dynamics of lattice systems with unbounded on-site terms in the Hamiltonian. arXiv:1410.8174v1

  22. Pedersen G.K.: C*-Algebras and their Automorphism Groups. Academic Press, London (1989)

    Google Scholar 

  23. Pier J.-P.: Amenable locally compact groups. Wiley, New York (1984)

    MATH  Google Scholar 

  24. Reed M., Simon B.: Methods of Modern Mathematical Physics, vol. 2. Academic Press, San Diego (1975)

    MATH  Google Scholar 

  25. Rieffel M.A.: On the uniqueness of the Heisenberg commutation relations. Duke Math. J. 39, 745–752 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schaefer H.H.: Topological vector spaces. Macmillan company, New York (1966)

    MATH  Google Scholar 

  27. Seiler, E.: Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics, Lecture Notes in Physics, vol. 159. Springer, Berlin (1982)

  28. Seiler, E.: “Constructive Quantum Field Theory: Fermions”. In: Dita, P., Georgescu, V., Purice, R. (eds.) Gauge Theories: Fundamental Interactions and Rigorous Results (Poiana Brasov, 1981), pp 263–310. Birkhauser, Basel (1982)

  29. v. Neumann, J.: On infinite direct products. Comp. Math. 6, 1–77. In: Taub, A.H. (ed.) Collected Works, vol. 3, Chapter 6. Pergamon Press, Oxford (1961)

  30. Wilson K.G.: Confinement of quarks. Phys. Rev. D 10, 2445 (1974)

    Article  ADS  Google Scholar 

  31. Wilson, K.G.: Quarks and strings on a lattice, p. 69 in new phenomena in subnuclear physics. Part A. In: Zichichi, A. (ed.) Proceedings of the International School of Subnuclear Physics, Erice 1975. Plenum Press, New York (1977)

  32. Yosida K.: Functional Analysis. Springer, Berlin (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Grundling.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grundling, H., Rudolph, G. Dynamics for QCD on an Infinite Lattice. Commun. Math. Phys. 349, 1163–1202 (2017). https://doi.org/10.1007/s00220-016-2733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2733-5

Navigation