Skip to main content
Log in

Hankel Determinant and Orthogonal Polynomials for a Gaussian Weight with a Discontinuity at the Edge

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We compute asymptotics for Hankel determinants and orthogonal polynomials with respect to a discontinuous Gaussian weight, in a critical regime where the discontinuity is close to the edge of the associated equilibrium measure support. Their behavior is described in terms of the Ablowitz–Segur family of solutions to the Painlevé II equation. Our results complement the ones in [33]. As consequences of our results, we conjecture asymptotics for an Airy kernel Fredholm determinant and total integral identities for Painlevé II transcendents, and we also prove a new result on the poles of the Ablowitz–Segur solutions to the Painlevé II equation. We also highlight applications of our results in random matrix theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segur, H.: Asymptotic solutions of the Korteweg–deVries equation. Stud. Appl. Math. 57(1), 13–44 (1976/77)

  2. Baik J., Buckingham R., DiFranco J.: Asymptotics of Tracy–Widom distributions and the total integral of a Painlevé II function. Commun. Math. Phys 280(2), 463–497 (2008) doi:10.1007/s00220-008-0433-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Baik J., Buckingham R., DiFranco J., Its A.: Total integrals of global solutions to Painlevé II. Nonlinearity 22(5), 1021–1061 (2009) doi:10.1088/0951-7715/22/5/006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bertola M.: On the location of poles for the Ablowitz–Segur family of solutions to the second Painlevé equation. Nonlinearity 25(4), 1179–1185 (2012) doi:10.1088/0951-7715/25/4/1179

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bohigas O., de Carvalho J.X., Pato M.P.: Deformations of the Tracy–Widom distribution. Phys. Rev. E (3) 79(3), 031117, 6 (2009). doi:10.1103/PhysRevE.79.031117

    Article  ADS  MathSciNet  Google Scholar 

  6. Bohigas O., Pato M.: Missing levels in correlated spectra. Phys. Lett. B 595(1-4), 171–176 (2004) doi:10.1016/j.physletb.2004.05.065

    Article  ADS  Google Scholar 

  7. Bothner, T.: Transition asymptotics for the painlevé ii transcendent (2015). arXiv:1502.03402[math-ph]

  8. Bothner, T., Deift, P., Its, A., Krasovsky, I.: On the asymptotic behavior of a log gas in the bulk scaling limit in the presence of a varying external potential (2014). arXiv:1407.2910

  9. Bothner T., Its A.: The nonlinear steepest descent approach to the singular asymptotics of the second Painlevé transcendent. Phys. D 241(23–24), 2204–2225 (2012) doi:10.1016/j.physd.2012.02.014

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen Y., Pruessner G.: Orthogonal polynomials with discontinuous weights. J. Phys. A 38(12), L191–L198 (2005) doi:10.1088/0305-4470/38/12/L01

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Deift, P.A.: Orthogonal polynomials and random matrices: a Riemann–Hilbert approach. Vol. 3. Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York. American Mathematical Society, Providence, pp. viii+273 (1999)

  12. Deift P.A., Its A., Krasovsky I.: Asymptotics of the Airy-kernel determinant. Comm. Math. Phys. 278(3), 643–678 (2008) doi:10.1007/s00220-007-0409-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Deift, P. A., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. (2), 137(2), 295–368 (1993). doi:10.2307/2946540. arXiv:math/9201261

  14. Deift P.A., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Commun. Pure Appl. Math. 52(12), 1491–1552 (1999) doi:10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.3.CO;2-R

    Article  MathSciNet  MATH  Google Scholar 

  15. Deift P.A., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52(11), 1335–1425 (1999) doi:10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Deift P., Gioev D.: Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices. Commun. Pure Appl. Math. 60(6), 867–910 (2007) doi:10.1002/cpa.20164

    Article  MathSciNet  MATH  Google Scholar 

  17. Deift, P.A., Its, A., Krasovsky, I.: Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher–Hartwig singularities. Ann. Math. (2) 174(2), 1243–1299 (2011). doi:10.4007/annals.2011.174.2.12. arXiv:0905.0443[math.FA]

  18. Dyson, F.J.: The Coulomb fluid and the fifth Painlevé transcendent. In: Yang, C.N., Liu, C.S., Yau, S.-T. (eds.) pp. 131–146. International Press, Cambridge (1995)

  19. Fokas A.S., Its A.R., Kitaev A.V.: The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys. 147(2), 395–430 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Y.: Painlevé transcendents. Vol. 128. Mathematical Surveys and Monographs. The Riemann–Hilbert approach, pp. xii+553. American Mathematical Society, Providence (2006) doi:10.1090/surv/128

  21. Its, A., Krasovsky, I.: “Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump”. In: Integrable systems and random matrices. Vol. 458, pp. 215–247. Contemp. Math. Amer. Math. Soc., Providence, RI (2008). doi:10.1090/conm/458/08938. arXiv:0706.3192 [math.FA]

  22. Its, A.R., Kuijlaars, A.B.J., Östensson, J.: Asymptotics for a special solution of the thirty fourth Painlevé equation. Nonlinearity 22(7), 1523–1558 (2009). doi:10.1088/0951-7715/22/7/002. arXiv:0811.3847[math.CA]

  23. Its, A.R.: “Discrete Painlevé Equations and Orthogonal Polynomials”. In: Levi, D., Olver, P., Thomova, Z., Winternitz, P. (eds.) Symmetries and Integrability of Difference Equations. London Mathematical Society Lecture Note Series 381, pp. 139–159. Cambridge University Press, Cambridge, Chap. 5 (2011). doi:10.1017/CBO9780511997136.007

  24. Its, A.R.: “Large N asymptotics in random matrices: the Riemann–Hilbert approach”. In: Random matrices, random processes and integrable systems. CRM Ser. Math. Phys., pp. 351-413. Springer, New York (2011). doi:10.1007/978-1-4419-9514-8_5

  25. Johansson K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998) doi:10.1215/S0012-7094-98-09108-6

    Article  MathSciNet  MATH  Google Scholar 

  26. Kapaev A.: Global asymptotics of the second Painlevé transcendent. Phys. Lett. A 167(4), 356–362 (1992) doi:10.1016/0375-9601(92)90271-M

    Article  ADS  MathSciNet  Google Scholar 

  27. Krasovsky, I.V.: Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant. Duke Math. J., 139(3):581–619 (2007). doi:10.1215/S0012-7094-07-13936-X. arXiv:math-th/9905111

  28. Mehta, M.L.: Random matrices. Third. Vol. 142. Pure and Applied Mathematics (Amsterdam), pp. xviii+688. Elsevier/Academic Press, Amsterdam (2004)

  29. Plancherel M.: Sur les valeurs asymptotiques des polynomes d’Hermite \({H_n(x)=(-I)^{n}e^{\frac{x^2}2} \frac{d^n}{dx^n} \left(e^{-\frac{x^2}2} \right)}\). Comment. Math. Helv. 1(1), 227–254 (1929) doi:10.1007/BF01208365

    Article  MathSciNet  MATH  Google Scholar 

  30. Romik D.: The Surprising Mathematics of Longest Increasing Subsequences, Institute of Mathematical Statistics Textbooks. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  31. Tracy C. A., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Xu S.-X., Dai D., Zhao Y.-Q.: Critical edge behavior and the Bessel to Airy transition in the singularly perturbed Laguerre unitary ensemble. Commun. Math. Phys. 332(3), 1257–1296 (2014) doi:10.1007/s00220-014-2131-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Xu S.-X., Zhao Y.-Q.: Painlevé XXXIV asymptotics of orthogonal polynomials for the Gaussian weight with a jump at the edge. Stud. Appl. Math. 127(1), 67–105 (2011) doi:10.1111/j.1467-9590.2010.00512.x

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bogatskiy.

Additional information

Communicated by P. Deift

At the time of publication, A. Bogatskiy is a student at the University of Chicago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogatskiy, A., Claeys, T. & Its, A. Hankel Determinant and Orthogonal Polynomials for a Gaussian Weight with a Discontinuity at the Edge. Commun. Math. Phys. 347, 127–162 (2016). https://doi.org/10.1007/s00220-016-2691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2691-y

Navigation