Skip to main content
Log in

Threshold State and a Conjecture of Poghosyan, Poghosyan, Priezzhev and Ruelle

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a precise relationship between the threshold state of the fixed-energy sandpile and the stationary state of Dhar’s abelian sandpile: in the limit as the initial condition s 0 tends to \({-\infty}\) , the former is obtained by size-biasing the latter according to burst size, an avalanche statistic. The question of whether and how these two states are related has been a subject of some controversy since 2000.

The size-biasing in our result arises as an instance of a Markov renewal theorem, and implies that the threshold and stationary distributions are not equal even in the \({s_0 \to -\infty}\) limit. We prove that, nevertheless, in this limit the total amount of sand in the threshold state converges in distribution to the total amount of sand in the stationary state, confirming a conjecture of Poghosyan, Poghosyan, Priezzhev and Ruelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs, Chapter 2 dated September 10, 1999. http://www.stat.berkeley.edu/users/aldous/RWG/book.html

  2. Athreya S.R., Járai A.A.: Infinite volume limit for the stationary distribution of abelian sandpile models. Commun. Math. Phys. 249(1), 197–213 (2004)

    Article  ADS  MATH  Google Scholar 

  3. Bond, B., Levine, L.: Abelian networks I: foundations and examples (2013). arxiv:1309.3445

  4. Bond, B., Levine, L.: Abelian networks II: halting on all inputs (2014). arxiv:1409.0170

  5. Bak P., Tang C., Wiesenfeld K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dhar D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64, 1613–1616 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Dhar D.: Theoretical studies of self-organized criticality. Phys. A 369, 29–70 (2006)

    Article  MathSciNet  Google Scholar 

  8. Dhar D., Manna S.S.: Inverse avalanches in the Abelian sandpile model. Phys. Rev. E 49, 2684–2687 (1994)

    Article  ADS  Google Scholar 

  9. Fey, A., Meester, R., Redig, F.: Stabilizability and percolation in the infinite volume sandpile model. Ann. Probab. pp. 654–675 (2009). arxiv:0710.0939

  10. Fey, A., Levine, L., Peres, Y.: Growth rates and explosions in sandpiles. J. Stat. Phys. 138, 143–159 (2010). arxiv:0901.3805

  11. Fey, A., Levine, L., Wilson, D.B.: Driving sandpiles to criticality and beyond. Phys. Rev. Lett. 104, 145703 (2010). arxiv:0912.3206

  12. Fey, A., Levine, L., Wilson, D.B.: The approach to criticality in sandpiles. Phys. Rev. E 82, 031121 (2010) arxiv:1001.3401

  13. Holroyd, A.E., Levine, L., Mészáros, K., Peres, Y., Propp, J., Wilson, D.B.: Chip-firing and rotor-routing on directed graphs, In and out of equilibrium 2, pp. 331–364. Birkhäuser (2008). arxiv:0801.3306

  14. Ivashkevich E.V., Ktitarev D.V., Priezzhev V.B.: Waves of topplings in an Abelian sandpile. Phys. A 209(3-4), 347–360 (1994)

    Article  MathSciNet  Google Scholar 

  15. Járai, A.: Sandpile models (2014). arxiv:1401.0354

  16. Jo H.-H., Jeong H.-C.: Comment on “Driving sandpiles to criticality and beyond”. Phys. Rev. Lett. 105, 019601 (2010)

    Article  ADS  Google Scholar 

  17. Kenyon, R.W., Wilson, D.B.: Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on \({\mathbb{Z}^2}\) (2011). arxiv:1107.3377

  18. Kesten H.: Renewal theory for functionals of a Markov chain with general state space. Ann. Probab. 2(3), 355–386 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Majumdar S.N., Dhar D.: Equivalence between the Abelian sandpile model and the \({q \to 0}\) limit of the Potts model. Phys. A 185(1–4), 129–145 (1992)

    Article  Google Scholar 

  20. Merino C.: Chip-firing and the Tutte polynomial. Ann. Comb. 1, 253–259 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pegden, W., Smart, C.K.: Convergence of the abelian sandpile. Duke Math. J. 162(4), 627–642 (2013). arxiv:1105.0111

  22. Perrot, Kévin, Van Pham, Trung: Chip-firing game and partial Tutte polynomial for Eulerian digraphs arxiv:1306.0294

  23. Poghosyan, Su. S., Poghosyan, V.S., Priezzhev, V.B., Ruelle, P.: Numerical study of the correspondence between the dissipative and fixed-energy Abelian sandpile models. Phys. Rev. E. 84, 066119 (2011). arxiv:1104.3548

  24. Poghosyan, V.S., Priezzhev, V.B., Ruelle, P.: Return probability for the loop-erased random walk and mean height in sandpile: a proof. J. Stat. Mech. P10004 (2011). arxiv:1106.5453

  25. Stanley R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  26. Vespignani A., Dickman R., Muñoz M.A., Zapperi S.: Absorbing-state phase transitions in fixed-energy sandpiles. Phys. Rev. E 62, 4564 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Levine.

Additional information

Communicated by H. Spohn

The author was partly supported by NSF grant DMS-1243606.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levine, L. Threshold State and a Conjecture of Poghosyan, Poghosyan, Priezzhev and Ruelle. Commun. Math. Phys. 335, 1003–1017 (2015). https://doi.org/10.1007/s00220-014-2216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2216-5

Keywords

Navigation