Skip to main content
Log in

String Theory on Elliptic Curve Orientifolds and KR-Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze the brane content and charges in all of the orientifold string theories on space-times of the form \({E \times \mathbb{R}^8}\), where E is an elliptic curve with holomorphic or anti-holomorphic involution. Many of these theories involve “twistings” coming from the B-field and/or sign choices on the orientifold planes. A description of these theories from the point of view of algebraic geometry, using the Legendre normal form, naturally divides them into three groupings. The physical theories within each grouping are related to one another via sequences of T-dualities. Our approach agrees with both previous topological calculations of twisted KR-theory and known physics arguments, and explains how the twistings originate from both a mathematical and a physical perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alling, N.L.: Real elliptic curves. In: North-Holland Mathematics Studies, vol. 54. North-Holland Publishing Co., Amsterdam (1981). [Notas de Matemática (Mathematical Notes), 81]

  2. Anderson D.W.: The real K-theory of classifying spaces. Proc. Nat. Acad. Sci. USA 51(4), 634–636 (1964)

    Article  ADS  MATH  Google Scholar 

  3. Atiyah M.F.: K-theory and reality. Q. J. Math. Oxf. Ser. 2 17, 367–386 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bates, B., Doran, C., Schalm, K.: Crosscaps in Gepner models and the moduli space of T 2 orientifolds. Adv. Theor. Math. Phys., 11(5), 839–912, (2007). arXiv:hep-th/0612228

  5. Bergman, O., Gimon, E., Sugimoto, S.: Orientifolds, RR torsion, and K-theory. J. High Energy Phys. 2001(5), 047 (2001). arXiv:hep-th/0103183

  6. Bergman, O., Gimon, E.G., Horava, P.: Brane transfer operations and T-duality of non-BPS states. J. High Energy Phys. 1999(04), 010 (1999). arXiv:hep-th/9902160

  7. Bianchi M., Pradisi G., Sagnotti A.: Toroidal compactification and symmetry breaking in open-string theories. Nucl. Phys. B 376(2), 365–386 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bianchi M., Sagnotti A.: On the systematics of open-string theories. Phys. Lett. B 247(4), 517–524 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dabholkar, A., Park, J.: Strings on orientifolds. Nucl. Phys. B 477, 701–714 (1996). arXiv:hep-th/9604178

  10. Distler, J., Freed, D.S., Moore, G.W.: Orientifold précis. In: Mathematical Foundations of Quantum Field Theory and Perturbative String Theory. Proc. Sympos. Pure Math., vol. 83, pp. 159–172. Amer. Math. Soc., Providence (2011). arXiv:0906.0795

  11. Donovan, P., Karoubi, M.: Graded Brauer groups and K-theory with local coefficients. Inst. Hautes Études Sci. Publ. Math. 38, 5–25 (1970). http://www.numdam.org/item?id=PMIHES_1970__38__5_0

  12. Doran, C., Mendez-Diez, S., Rosenberg, J.: T-duality for orientifolds and twisted KR-theory. Lett. Math. Phys. 104(11), 1333–1364 (2014). arXiv:1306.1779

  13. Gao, D., Hori, K.: On the structure of the Chan–Paton factors for D-branes in type II orientifolds (2010). (Preprint). arXiv:1004.3972

  14. Green P.S.: A cohomology theory based upon self-conjugacies of complex vector bundles. Bull. Am. Math. Soc. 70, 522–524 (1964)

    Article  MATH  Google Scholar 

  15. Gukov, S.: K-theory, reality, and orientifolds. Commun. Math. Phys. 210, 621–639 (2000). arXiv:hep-th/9901042

  16. Hori, K.: D-branes, T duality, and index theory. Adv. Theor. Math. Phys. 3, 281–342 (1999). hep-th/9902102

  17. Hyakutake, Y., Imamura, Y., Sugimoto, S.: Orientifold planes, type I Wilson lines and non-BPS D-branes. J. High Energy Phys. 2000(08), 043 (2000). arXiv:hep-th/0007012

  18. Karoubi, M., Weibel, C.: Algebraic and real K-theory of real varieties. Topology 42(4), 715–742 (2003). arXiv:math/0509412

  19. Keurentjes, A.: Orientifolds and twisted boundary conditions. Nucl. Phys. B 589(2), 440–460 (2000). arXiv:hep-th/0004073

  20. Lawson H.B. Jr, Michelsohn M.L.: Spin geometry. In: Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)

    Google Scholar 

  21. Mathai, V., Rosenberg, J.: T-duality for torus bundles with H-fluxes via noncommutative topology. Commun. Math. Phys. 253(3), 705–721 (2005). arXiv:hep-th/0401168

  22. Minasian, R., Moore, G.W.: K-theory and Ramond–Ramond charge. J. High Energy Phys. 1997(11), 002 (1997). arXiv:hep-th/9710230

  23. Moutuou, E.-K.M.: Twistings of KR for Real groupoids (2011). arXiv:1110.6836

  24. Moutuou, E.-K.M.: Twisted groupoid KR-theory. PhD thesis, Université de Lorraine (2012). http://www.theses.fr/2012LORR0042

  25. Moutuou, E.-K.M.: On groupoids with involutions and their cohomology. N. Y. J. Math. 19, 729–792 (2013). arXiv:1202.0155

  26. Moutuou, E.-K.M.: Graded Brauer groups of a groupoid with involution. J. Funct. Anal. 266(5), 2689–2739 (2014). arXiv:1202.2057

  27. Olsen, K., Szabo, R.J.: Constructing D-branes from K-theory. Adv. Theor. Math. Phys. 3, 889–1025 (1999). arXiv:hep-th/9907140

  28. Pedrini, C., Weibel, C.: The higher K-theory of real curves. K-Theory 27(1), 1–31 (2002)

  29. Sagnotti, A.: Open strings and their symmetry groups. In: Nonperturbative Quantum Field Theory (Cargèse, 1987). NATO Adv. Sci. Inst. Ser. B Phys., vol. 185, pp. 521–528. Plenum, New York (1988). arXiv:hep-th/0208020

  30. Vafa, C.: Mirror transform and string theory. In: Geometry, Topology, and Physics Conf. Proc. Lecture Notes on Geometry and Topology, vol. IV, pp. 341–356. Int. Press, Cambridge (1995). arXiv:hep-th/9403151

  31. Whittaker, E.T., Watson, G.N.: A course of modern analysis. In: Cambridge Mathematical Library. Cambridge University Press, Cambridge (1996). [An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, reprint of the fourth (1927) edition]

  32. Witten, E.: D-branes and K-theory. J. High Energy Phys. 1998(12), 019 (1998). arXiv:hep-th/9810188

  33. Witten, E.: Toroidal compactification without vector structure. J. High Energy Phys. 1998(2), 006 (1998). arXiv:hep-th/9712028

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Rosenberg.

Additional information

Communicated by H. Ooguri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doran, C., Méndez-Diez, S. & Rosenberg, J. String Theory on Elliptic Curve Orientifolds and KR-Theory. Commun. Math. Phys. 335, 955–1001 (2015). https://doi.org/10.1007/s00220-014-2200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2200-0

Keywords

Navigation