Skip to main content
Log in

Subfactors of Index less than 5, Part 1: The Principal Graph Odometer

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this series of papers we show that there are exactly ten subfactors, other than A subfactors, of index between 4 and 5. Previously this classification was known up to index \({3+\sqrt{3}}\). In the first paper we give an analogue of Haagerup’s initial classification of subfactors of index less than \({3+\sqrt{3}}\), showing that any subfactor of index less than 5 must appear in one of a large list of families. These families will be considered separately in the three subsequent papers in this series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asaeda M., Haagerup U.: Exotic subfactors of finite depth with Jones indices \({(5+\sqrt{13})/2}\) and \({(5+\sqrt{17})/2}\). Commun. Math. Phys. 202(1), 1–63 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Asaeda M.: Galois groups and an obstruction to principal graphs of subfactors. Internat. J. Math. 18(2), 191–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asaeda M., Yasuda S.: On Haagerup’s list of potential principal graphs of subfactors. Commun. Math. Phys. 286(3), 1141–1157 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bisch D.: An example of an irreducible subfactor of the hyperfinite II1 factor with rational, noninteger index. J. Reine Angew. Math. 455, 21–34 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Bisch D.: Principal graphs of subfactors with small Jones index. Math. Ann. 311(2), 223–231 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bisch D., Jones V.: Algebras associated to intermediate subfactors. Invent. Math. 128(1), 89–157 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bigelow, S., Morrison, S., Peters, E., Snyder, N.: Constructing the extended Haagerup planar algebra. http://arxiv.org/abs/0909.4099 [math.OA], 2011 to appear Acta Mathematica

  8. Bisch D., Nicoara R., Popa S.: Continuous families of hyperfinite subfactors with the same standard invariant. Internat. J. Math. 18(3), 255–267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barrett J.W., Westbury B.W.: Spherical categories. Adv. Math. 143(2), 357–375 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calegari F., Morrison S., Snyder N.: Cyclotomic integers, fusion categories, and subfactors. Commun. Math. Phys. 303(3), 845–896 (2011) With an appendix by V. Ostrik

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and towers of algebras, Volume 14 of Mathematical Sciences Research Institute Publications. New York: Springer-Verlag, 1989

  12. Graham J.J., Lehrer G.I.: The representation theory of affine Temperley-Lieb algebras. Enseign. Math. (2) 44(3-4), 173–218 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Haagerup, U.: Principal graphs of subfactors in the index range \({4 < [M:N] <3 +\sqrt2}\). In: Subfactors (Kyuzeso, 1993), River Edge, NJ: World Sci. Publ., 1994, pp. 1–38

  14. Han, R.: A Construction of the −2221+ Planar Algebra. PhD thesis, University of California, Riverside, 2010. http://arxiv.org/abs/1102.2052 [math.OA], 2011

  15. Izumi, M., Jones, V.F.R., Morrison, S., Snyder, N. Classification of subfactors of index less than 5, Part 3: Quadruple points. Commun. Math. Phys. http://arxiv.org/abs/1109.3190 (2011)

  16. Izumi M.: Application of fusion rules to classification of subfactors. Publ. Res. Inst. Math. Sci. 27(6), 953–994 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Izumi, M.: Goldman’s type theorems in index theory. In Operator algebras and quantum field theory (Rome, 1996). Cambridge, MA: Int. Press, 1997, pp. 249–269

  18. Izumi M.: The structure of sectors associated with Longo-Rehren inclusions. II. Examples. Rev. Math. Phys. 13(5), 603–674 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jones, V.F.R.: Planar algebras, I. http://arxiv.org/abs/math.QA/9909027 [math.OA], 1999

  20. Jones, V.F.R.: Actions of finite groups on the hyperfinite type II1 factor. Mem. Amer. Math. Soc. 28(237), v+70 1980

    Google Scholar 

  21. Jones V.F.R.: Index for subfactors. Invent. Math. 72(1), 1–25 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Jones, V.F.R.: The annular structure of subfactors. In: Essays on geometry and related topics, Vol. 1, 2, Vol. 38 of Monogr. Enseign. Math., Geneva: Enseignement Math., 2001, pp. 401–463

  23. Jones, V.F.R.: Quadratic tangles in planar algebras, 2003 available at http://arxiv.org/abs/:1007.1158 [math.OA], 2010

  24. Jones V.F.R., Reznikoff S.A.: Hilbert space representations of the annular Temperley-Lieb algebra. Pacific J. Math. 228(2), 219–249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kawahigashi Y.: Classification of paragroup actions in subfactors. Publ. Res. Inst. Math. Sci. 31(3), 481–517 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Morrison, S., Penneys, D., Peters, E., Snyder, N.: Classification of subfactors of index less than 5, Part 2: Triple points. Int. J. Math. doi:10.1142/S0129167X11007586. http://arxiv.org/abs/1007.2240 [math.OA] 2011

  27. Ocneanu A.: Actions des groupes moyennables sur les algèbres de von Neumann. C. R. Acad. Sci. Paris Sér. A-B 291(6), A399–A401 (1980)

    MathSciNet  Google Scholar 

  28. Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator algebras and applications, Vol. 2, Volume 136 of London Math. Soc. Lecture Note Ser., Cambridge: Cambridge Univ. Press, 1988, pp. 119–172

  29. Ocneanu, A.: Chirality for operator algebras. In: Subfactors (Kyuzeso, 1993), River Edge, NJ: World Sci. Publ., 1994, pp. 39–63

  30. Popa S.: Classification of subfactors: the reduction to commuting squares. Invent. Math. 101(1), 19–43 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Popa, S.: Subfactors and classification in von Neumann algebras. In: Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Tokyo: Math. Soc. Japan., pp. 987–996

  32. Popa S.: Markov traces on universal Jones algebras and subfactors of finite index. Invent. Math. 111(2), 375–405 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Popa S.: Classification of amenable subfactors of type II. Acta Math. 172(2), 163–255 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Popa S.: An axiomatization of the lattice of higher relative commutants of a subfactor. Invent. Math. 120(3), 427–445 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Penneys, D., Tener, J.: Classification of subfactors of index less than 5, Part 4: Cyclotomicity. Int. J. Math. doi:10.1142/S0129167X11007641. http://arxiv.org/abs/1010.3797 [math.OA], 2011

  36. Turaev V.G., Viro O.Ya.: State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31(4), 865–902 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Morrison.

Additional information

Communicated by Y. Kawahigashi

Copyright © 2012 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, S., Snyder, N. Subfactors of Index less than 5, Part 1: The Principal Graph Odometer. Commun. Math. Phys. 312, 1–35 (2012). https://doi.org/10.1007/s00220-012-1426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1426-y

Keywords

Navigation