Skip to main content
Log in

Comparison Between the Cramer-Rao and the Mini-max Approaches in Quantum Channel Estimation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In a unified viewpoint in quantum channel estimation, we compare the Cramér-Rao and the mini-max approaches, which gives the Bayesian bound in the group covariant model. For this purpose, we introduce the local asymptotic mini-max bound, whose maximum is shown to be equal to the asymptotic limit of the mini-max bound. It is shown that the local asymptotic mini-max bound is strictly larger than the Cramér-Rao bound in the phase estimation case while both bounds coincide when the minimum mean square error decreases with the order \({O(\frac{1}{n})}\) . We also derive a sufficient condition so that the minimum mean square error decreases with the order \({O(\frac{1}{n})}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujiwara A.: Quantum channel identification problem. Phys. Rev. A 63, 042304 (2001)

    Article  ADS  Google Scholar 

  2. Fujiwara A., Imai H.: A fibre bundle over manifolds of quantum channels and its application to quantum statistics. J. Phys. A: Math. Theor. 41, 255304 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  3. Fujiwara A., Imai H.: Quantum parameter estimation of a generalized Pauli channel. J. Phys. A: Math. Gen. 36, 8093 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Fujiwara A.: Estimation of SU(2) operation and dense coding: an information geometric approach. Phys. Rev. A 65, 012316 (2002)

    Article  ADS  Google Scholar 

  5. Imai H., Fujiwara F.: Geometry of optimal estimation scheme for SU(D) channels. J. Phys. A: Math. Theor. 40, 4391 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Hayashi M.: Parallel treatment of estimation of SU(2) and phase estimation. Phys. Lett. A 354, 183 (2006)

    Article  ADS  Google Scholar 

  7. Chiribella G., D’Ariano G.M., Perinotti P., Sacchi M.F.: Efficient use of quantum resources for the transmission of a reference frame. Phys. Rev. Lett. 93, 180503 (2004)

    Article  ADS  Google Scholar 

  8. Bagan E., Baig M., Munoz-Tapia R.: Quantum reverse-engineering and reference frame alignment without non-local correlations. Phys. Rev. A 70, 030301 (2004)

    Article  ADS  Google Scholar 

  9. Luis A., Perina J.: Optimum phase-shift estimation and the quantum description of the phase difference. Phys. Rev. A 54, 4564 (1996)

    Article  ADS  Google Scholar 

  10. Buzek V., Derka R., Massar S.: Optimal quantum clocks. Phys. Rev. Lett. 82, 2207 (1999)

    Article  ADS  Google Scholar 

  11. Imai H., Hayashi M.: Fourier Analytic Approach to Phase Estimation in Quantum Systems. New J. Phys. 11, 043034 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  12. Kahn J.: Fast rate estimation of an unitary operation in SU(d). Phys. Rev. A 75, 022326 (2007)

    Article  ADS  Google Scholar 

  13. Hotta M., Karasawa T., Ozawa M.: N-body-extended channel estimation for low-noise parameters. J. Phys. A: Math. Gen. 39, 14465 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Matsumoto, K.: On metric of quantum channel spaces. http://arXiv.org/abs/1005.4759v1 [quant-ph], 2010

  15. Holevo A.S.: Covariant measurements and uncertainty relations. Rep. Math. Phys. 16, 385–400 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Nagaoka, H.: On the parameter estimation problem for quantum statistical models. In: Proc. 12th Symp. on Inform. Theory and its Appl. p 577 (1989); Reprinted in Nagaoka H.: Asymptotic Theory of Quantum Statistical Inference ed. M Hayashi, Singapore: World Scientific, p. 125, 2005

  17. Fujiwara A., Nagaoka H.: Quantum Fisher metric and estimation for pure state models. Phys. Lett. A 201, 119 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Hayashi M.: Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation. J. Phys. A: Math. Gen. 35, 7689 (2002)

    Article  ADS  MATH  Google Scholar 

  19. Helstrom C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    Google Scholar 

  20. Holevo A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982) (originally published in Russian, 1980)

    MATH  Google Scholar 

  21. Hayashi M: Quantum Information: An Introduction. Springer, Berlin (2006)

    MATH  Google Scholar 

  22. Hayashi, M., Matsumoto, K.: Statistical model with measurement degree of freedom and quantum physics. RIMS koukyuroku No 1055 (Kyoto: Kyoto University) p 96 (1998) (In Japanese); Hayashi, M., Matsumoto, K.: Asymptotic Theory of Quantum Statistical Inference. ed M Hayashi, Singapore: World Scientific, 2005, p. 162 (reprinted, English translation)

  23. Gill R., Massar S.: State estimation for large ensembles. Phys. Rev. A 61, 042312 (2000)

    Article  ADS  Google Scholar 

  24. Hayashi, M.: Quantum estimation and the quantum central limit theorem. In: Selected Papers on Probability and Statistics American Mathematical Society Translations Series 2, Vol. 277, Providence RI: Amer. Math. Soc., 2009, pp. 95–123. (It was originally published in Japanese in Bulletin of Mathematical Society of Japan, Sugaku, Vol. 55, No. 4, 368–391 (2003))

  25. Guţă M., Kahn J.: Local asymptotic normality for qubit states. Phys. Rev. A 73, 052108 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  26. Guţă M., Jencova A.: Local asymptotic normality in quantum statistics. Commun. Math. Phys. 276, 341–379 (2007)

    Article  ADS  MATH  Google Scholar 

  27. Guţă M., Janssens B., Kahn J.: Optimal estimation of qubit states with continuous time measurements. Commun. Math. Phys. 277, 127–160 (2008)

    ADS  MATH  Google Scholar 

  28. Hayashi M., Matsumoto K.: Asymptotic performance of optimal state estimation in qubit system. J. Math. Physc. 49, 102101 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  29. LeCam L.: Asymptotic Methods in Statistical Decision Theory. Springer, New York (1986)

    Book  Google Scholar 

  30. Fujiwara A.: Strong consistency and asymptotic efficiency for adaptive quantum estimation problems. J. Phys. A: Math. Gen. 39, 12489 (2006)

    Article  ADS  MATH  Google Scholar 

  31. Higgins B.L., Berry D.W., Bartlett S.D., Wiseman H.M., Pryde G.J.: Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007)

    Article  ADS  Google Scholar 

  32. Nagata T., Okamoto R., O’Brien J.L., Sasaki K., Takeuchi S.: Beating the Standard Quantum Limit with Four-Entangled Photons. Science 316(5825), 726 (2007)

    Article  ADS  Google Scholar 

  33. Okamoto R., Hofmann H.F., Nagata T., O’Brien J.L., Sasaki K., Takeuchi S.: Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers. New J. Phys. 10, 073033 (2008)

    Article  ADS  Google Scholar 

  34. Jones J.A., Karlen S.D., Fitzsimons J., Ardavan A., Benjamin S.C., Briggs G.A.D., Morton J.J.L.: Magnetic Field Sensing Beyond the Standard Quantum Limit Using 10-Spin NOON States. Science 324, 1166–1168 (2009)

    Article  ADS  Google Scholar 

  35. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation, Graduate Studies in Mathematics 47. Providence. RI: Amer. Math. Soc., 2002

  36. Giovannetti V., Lloyd S., Maccone L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    Article  ADS  Google Scholar 

  37. Giovannetti V., Lloyd S., Maccone L.: Quantum-enhanced “Quantum metrology”. Phys. Rev. Lett. 96, 010401 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  38. Hajek, J.: Local asymptotic minimax and admissibility in estimation. In: Proc. Sixth Berkeley Symp. on Math. Statist. and Prob., Vol. 1, Berkley, CA: Univ. of Calif. Press, 1972, pp. 175–194

  39. Choi M.-D.: Completely Positive Linear Maps on Complex Matrices. Lin. Alg. Appl. 10, 285–290 (1975)

    Article  MATH  Google Scholar 

  40. Jamiolkowski A.: Rep. Math. Phys. 3, 275 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Hayashi M.: Phase estimation with photon number constraint. Prog. Inform. 8, 81–87 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Hayashi.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, M. Comparison Between the Cramer-Rao and the Mini-max Approaches in Quantum Channel Estimation. Commun. Math. Phys. 304, 689–709 (2011). https://doi.org/10.1007/s00220-011-1239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1239-4

Keywords

Navigation