Skip to main content
Log in

Self-cloning brewing yeast: a new dimension in beverage production

  • Review Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Since the mid-1990s, biotechnology has advanced, and there has been an increased focus on using genetically modified yeast in the production of fermented beverages and the manufacturing of bioethanol. Yeast is the primary microorganism for fermented beverages such as beer, wine and sake. However, existing individual strains will not completely fulfill future demands for an efficient and high-quality fermentation. In this case, several research groups have been working on genetic modifications of yeast to create an up-to-date application. Genetically modified organisms (GMO) such as yeast, crops and plants in the food and beverage production are not desired by the consumer. A possible solution to overcome the consumer distaste of products labeled as containing GMO could be the application of self-cloning yeasts. Thus, connotated, the modification of the genome occurs without heterologous DNA. This review is an overview of current research regarding the use of self-cloning yeast in brewing, wine making, baked goods and sake production. The main focus of this paper concerns the possibilities of promoter usage and the construction of self-cloning yeast and the monitoring of self-cloning yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(5287):546

    CAS  Google Scholar 

  2. Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61(3):197–205

    CAS  Google Scholar 

  3. Panteloglou AG, Bell AE, Ma F (2010) Effect of high-hydrostatic pressure and pH on the rheological properties of gum arabic. Food Chem 122(4):972–979

    CAS  Google Scholar 

  4. Birch RM, Walker GM (2000) Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme Microb Technol 26(9–10):678–687

    CAS  Google Scholar 

  5. Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109(1):13–24

    CAS  Google Scholar 

  6. Duong CT, Strack L, Futschik M, Katou Y, Nakao Y, Fujimura T, Shirahige K, Kodama Y, Nevoigt E (2011) Identification of Sc-type ILV6 as a target to reduce diacetyl formation in lager brewers’ yeast. Metab Eng 13(6):638–647

    CAS  Google Scholar 

  7. Kusunoki K, Ogata T (2012) Construction of self-cloning bottom-fermenting yeast with low vicinal diketone production by the homo-integration of ILV5. Yeast 29(10):435–442

    CAS  Google Scholar 

  8. Cambon B, Monteil V, Remize F, Camarasa C, Dequin S (2006) Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol 72(7):4688–4694

    CAS  Google Scholar 

  9. Remize F, Sablayrolles JM, Dequin S (2000) Re-assessment of the influence of yeast strain and environmental factors on glycerol production in wine. J Appl Microbiol 88(3):371–378

    CAS  Google Scholar 

  10. Akada R, Hirosawa I, Kawahata M, Hoshida H, Nishizawa Y (2002) Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast. Yeast 19(5):393–402

    CAS  Google Scholar 

  11. Dietvorst J, Londesborough J, Steensma HY (2005) Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter. Yeast 22(10):775–788

    CAS  Google Scholar 

  12. Zheng X, Damore T, Russell I, Stewart GG (1994) Factors influencing maltotriose utilization during brewery wort fermentations. J Am Soc Brew Chem 52(2):41–47

    CAS  Google Scholar 

  13. Cousseau FEM, Alves SL, Trichez D, Stambuk BU (2013) Characterization of maltotriose transporters from the Saccharomyces eubayanus subgenome of the hybrid Saccharomyces pastorianus lager brewing yeast strain Weihenstephan 34/70. Lett Appl Microbiol 56(1):21–29

    CAS  Google Scholar 

  14. Schuller D, Casal M (2005) The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl Microbiol Biotechnol 68(3):292–304

    CAS  Google Scholar 

  15. Fleet GH (2008) Wine yeasts for the future. FEMS Yeast Res 8(7):979–995

    CAS  Google Scholar 

  16. Steensels J, Snoek T, Meersman E, Picca Nicolino M, Aslankoohi E, Christiaens JF, Gemayel R, Meert W, New AM, Pougach K, Saels V, van der Zande E, Voordeckers K, Verstrepen KJ (2012) Selecting and generating superior yeasts for the brewing industry. Cerevisia 37(2):63–67

    CAS  Google Scholar 

  17. Akada R (2002) Genetically modified industrial yeast ready for application. J Biosci Bioeng 94(6):536–544

    CAS  Google Scholar 

  18. USFDA Generally Recognized as Safe (GRAS). http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/ucm2006850.htm. Accessed April 2013

  19. Directives 2009/41/EC (2009) Off J Eur Union

  20. Sheldon IM (2001) Regulation of biotechnology: will we ever “freely” trade GMOs? Paper presented at the 77th EAAE seminar/NJF seminar no. 325, Helsinki

  21. Swiegers JH, Capone DL, Pardon KH, Elsey GM, Sefton MA, Francis IL, Pretorius IS (2007) Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast 24(7):561–574

    CAS  Google Scholar 

  22. Hino A (2002) Safety assessment and public concerns for genetically modified food products: the Japanese experience. Toxicol Pathol 30(1):126–128

    Google Scholar 

  23. Gruère GP, Rao SR (2007) A review of international labeling policies of genetically modified food to evaluate India’s proposed rule. AGBioForum J Agrobiotechnol Manage Econ 10(1):51–64

    Google Scholar 

  24. BIOTECSUR (2008) Inventory of biotechnological rules and regulations in the MERCOSUR. http://docs.biotecsur.org/informes/en/inventario/4_normativa_ms.pdf. Accessed April 2013

  25. MOH (2002) Ministry of health regulation; order no. 28 administrative provisions for genetically modified food hygiene

  26. Wang ZY, Zhang F, He XP, Zhang BR (2006) A survey and outlook of research in breeding of industrial brewing yeast by self-cloning technique. Microbiol China 33(6):138–141

    Google Scholar 

  27. Ceccoli S, Hixon W (2012) Explaining attitudes toward genetically modified foods in the European Union. Int Polit Sci Rev 33(3):301–319

    Google Scholar 

  28. Lusk JL, Rozan A (2005) Consumer acceptance of biotechnology and the role of second generation technologies in the USA and Europe. Trends Biotechnol 23(8):386–387

    CAS  Google Scholar 

  29. Curtis KR, McCluskey JJ, Wahl TI (2004) Consumer acceptance of genetically modified food products in the developing world. AGBioForum J Agrobiotechnol Manage Econ 7(1 and 2):70–75

    Google Scholar 

  30. Special Eurobarometer 244b Europeans in biotechnology in 2005: patterns and trends (2006) European commission. http://ec.europa.eu/public_opinion/index_en.htm

  31. Eurobarometer 238 “Risk issue” (2006) European commission. http://ec.europa.eu/public_opinion/index_en.htm

  32. Eurobarometer 73.1 Biotechnology (2010) European commission. http://ec.europa.eu/public_opinion/index_en.htm

  33. PEW (2003) Initiative on food and biotechnology-survey conducted August 5–10

  34. Chen M-F, Li H-L (2007) The consumer’s attitude toward genetically modified foods in Taiwan. Food Qual Prefer 18(4):662–674

    Google Scholar 

  35. Martinez-Poveda A, Molla-Bauza MB, del Campo Gomis FJ, Martinez LM-C (2009) Consumer-perceived risk model for the introduction of genetically modified food in Spain. Food Policy 34(6):519–528

    Google Scholar 

  36. Lusk JL, House LO, Valli C, Jaeger SR, Moore M, Morrow JL, Traill WB (2004) Effect of information about benefits of biotechnology on consumer acceptance of genetically modified food: evidence from experimental auctions in the United States, England, and France. Eur Rev Agric Econ 31(2):179–204

    Google Scholar 

  37. Loureiro ML, Hine S (2004) Preferences and willingness to pay for GM labeling policies. Food Policy 29(5):467–483

    Google Scholar 

  38. Lusk JL, Rozan A (2008) Public policy and endogenous beliefs: the case of genetically modified food. J Agric Resour Econ 33(2):270–289

    Google Scholar 

  39. Tenbült P, De Vries NK, van Breukelen G, Dreezens E, Martijn C (2008) Acceptance of genetically modified foods: the relation between technology and evaluation. Appetite 51(1):129–136

    Google Scholar 

  40. Šorgo A, Jaušovec N, Jaušovec K, Puhek M (2011) The influence of intelligence and emotions on the acceptability of genetically modified organisms

  41. Han JH, Harrison RW (2007) Factors influencing urban consumers’ acceptance of genetically modified foods. Rev Agric Econ 29(4):700–719

    Google Scholar 

  42. Caporale G, Monteleone E (2004) Influence of information about manufacturing process on beer acceptability. Food Qual Prefer 15(3):271–278

    Google Scholar 

  43. Tomlinson N (1998) Worldwide regulatory issues: legislation and labeling. In: Roller S, Harlander S (eds) Genetic modification in the food industry—a strategy for food quality improvement. Blackie Academic and Professional, London

    Google Scholar 

  44. van Roojian R, Klaassen P (1998) Backer′s yeast. In: Roller S, Harlander S (eds) Genetic modification in rh food industry—a strategy for food quality improvement. Blackie Academic and Professional, London

    Google Scholar 

  45. Hammond JRM (1995) Genetically-modified brewing yeasts for the twenty first century. Progress to date. Yeast 11(16):1613–1627

    CAS  Google Scholar 

  46. Husnik JI, Delaquis PJ, Cliff MA, van Vuuren HJJ (2007) Functional analyses of the malolactic wine yeast ML01. Am J Enol Vitic 58(1):42–52

    CAS  Google Scholar 

  47. Main GL, Threlfall RT, Morris JR (2007) Reduction of malic acid in wine using natural and genetically enhanced microorganisms. Am J Enol Vitic 58(3):341–345

    CAS  Google Scholar 

  48. Husnik JI, Volschenk H, Bauer J, Colavizza D, Luo ZL, van Vuuren HJJ (2006) Metabolic engineering of malolactic wine yeast. Metab Eng 8(4):315–323

    CAS  Google Scholar 

  49. USFDA (2006) Agency response letter GRAS notice no. GRN 000175. http://www.fda.gov/Food/FoodIngredientsPackaging/GenerallyRecognizedasSafeGRAS/GRASListings/ucm154604.htm. Accessed June 2012

  50. Coulon J, Husnik JI, Inglis DL, van der Merwe GK, Lonvaud A, Erasmus DJ, van Vuuren HJJ (2006) Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. Am J Enol Vitic 57(2):113–124

    CAS  Google Scholar 

  51. Zimmerli B, Schlatter J (1991) Ethyl carbamate: analytical methodology, occurrence, formation, biological activity and risk assessment. Mutation Res Gen Toxicol 259(3–4):325–350

    CAS  Google Scholar 

  52. EFSA (2007) Ethyl carbamate and hydrocyanic acid in food and beverages scientific opinion of the panel on contaminants (question no EFSA-Q-2006-076). EFSA J 551:1–44

    Google Scholar 

  53. Wang ZY, He XP, Zhang BR (2007) Over-expression of GSH1 gene and disruption of PEP4 gene in self-cloning industrial brewer’s yeast. Int J Food Microbiol 119(3):192–199

    CAS  Google Scholar 

  54. Wang ZY, Wang JJ, Liu XF, He XP, Zhang BR (2009) Recombinant industrial brewing yeast strains with ADH2 interruption using self-cloning GSH1 + CUP1 cassette. FEMS Yeast Res 9(4):574–581. doi:10.1111/j.1567-1364.2009.00502.x

    CAS  Google Scholar 

  55. Wang ZY, He XP, Liu N, Zhang BR (2008) Construction of self-cloning industrial brewing yeast with high-glutathione and low-diacetyl production. Int J Food Sci Technol 43(6):989–994

    CAS  Google Scholar 

  56. Iijima K, Ogata T (2010) Construction and evaluation of self-cloning bottom-fermenting yeast with high SSU1 expression. J Appl Microbiol 109(6):1906–1913

    CAS  Google Scholar 

  57. Ishida-Fujii K, Goto S, Sugiyama H, Takagi Y, Saiki T, Takagi M (1998) Breeding of flocculent industrial alcohol yeast strains by self-cloning of the flocculation gene FLO1 and repeated-batch fermentation by transformants. J Gen Appl Microbiol 44(5):347–353

    CAS  Google Scholar 

  58. Dahabieh MS, Husnik JI, van Vuuren HJJ (2010) Functional enhancement of Sake yeast strains to minimize the production of ethyl carbamate in Sake wine. J Appl Microbiol 109(3):963–973

    CAS  Google Scholar 

  59. Hirosawa I, Aritomi K, Hoshida H, Kashiwagi S, Nishizawa Y, Akada R (2004) Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol. Appl Microbiol Biotechnol 65(1):68–73

    CAS  Google Scholar 

  60. Aritomi K, Hirosawa I, Hoshida H, Shiigi M, Nishizawa Y, Kashiwagi S, Akada R (2004) Self-cloning yeast strains containing novel FAS2 mutations produce a higher amount of ethyl caproate in Japanese sake. Biosci Biotechnol Biochem 68(1):206–214

    CAS  Google Scholar 

  61. Takagi H, Matsui F, Kawaguchi A, Wu H, Shimoi H, Kubo Y (2007) Construction and analysis of self-cloning sake yeasts that accumulate proline. J Biosci Bioeng 103(4):377–380

    CAS  Google Scholar 

  62. Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H (2012) Simultaneous accumulation of proline and trehalose in industrial baker’s yeast enhances fermentation ability in frozen dough. J Biosci Bioeng 113(5):592–595

    CAS  Google Scholar 

  63. Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H (2012) Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker’s yeast. Microb Cell Fact 11

  64. Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H (2012) Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker’s yeast in Frozen Dough. Biosci Biotechnol Biochem 76(3):624–627

    CAS  Google Scholar 

  65. Sasano Y, Haitani Y, Ohtsu I, Shima J, Takagi H (2012) Proline accumulation in baker’s yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int J Food Microbiol 152(1–2):40–43

    CAS  Google Scholar 

  66. Kaino T, Tateiwa T, Mizukami-Murata S, Shima J, Takagi H (2008) Self-cloning baker’s yeasts that accumulate proline enhance freeze tolerance in doughs. Appl Environ Microbiol 74(18):5845–5849

    CAS  Google Scholar 

  67. Cordente AG, Cordero-Bueso G, Pretorius IS, Curtin CD (2013) Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. FEMS Yeast Res 13(1):62–73

    CAS  Google Scholar 

  68. Hohmann S, Mager WH (2003) Yeast stress responses. Springer, Berlin

    Google Scholar 

  69. Allison LA (2007) Fundamental molecular biology. Blackwell Publishing, New York

    Google Scholar 

  70. Miller G, Hahn S (2006) A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex. Nat Struct Mol Biol 13(7):603–610

    CAS  Google Scholar 

  71. Lagrange T, Kapanidis AN, Tang H, Reinberg D, Ebright RH (1998) New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 12(1):34–44

    CAS  Google Scholar 

  72. Benoist C, Chambon P (1981) In vivo sequence requirements of the SV40 early promoter region. Nature 290(5804):304–310

    CAS  Google Scholar 

  73. Basehoar AD, Zanton SJ, Pugh BF (2004) Identification and distinct regulation of yeast TATA box-containing genes. Cell 116(5):699–709

    CAS  Google Scholar 

  74. Cormack BP, Struhl K (1992) The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 69(4):685–696

    CAS  Google Scholar 

  75. Zou YY, Huang W, Gu ZL, Gu X (2011) Predominant gain of promoter TATA box after gene duplication associated with stress responses. Mol Biol Evol 28(10):2893–2904

    CAS  Google Scholar 

  76. MartinezPastor MT, Marchler G, Schuller C, MarchlerBauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J 15(9):2227–2235

    CAS  Google Scholar 

  77. Conlin LK, Nelson HCM (2007) The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor. Mol Cell Biol 27(4):1505–1515

    CAS  Google Scholar 

  78. de Boer CG, Hughes TR (2012) YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities. Nucleic Acids Res 40(D1):D169–D179

    Google Scholar 

  79. Boy-Marcotte E, Lagniel G, Perrot M, Bussereau F, Boudsocq A, Jacquet M, Labarre J (1999) The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol Microbiol 33(2):274–283

    CAS  Google Scholar 

  80. Singh DP, Fatma N, Kimura A, Chylack LT Jr, Shinohara T (2001) LEDGF binds to heat shock and stress-related element to activate the expression of stress-related genes. Biochem Biophys Res Commun 283(4):943–955

    CAS  Google Scholar 

  81. Da Silva NA, Srikrishnan S (2012) Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 12(2):197–214

    Google Scholar 

  82. Piper PW, Talreja K, Panaretou B, Moradasferreira P, Byrne K, Praekelt UM, Meacock P, Recnacq M, Boucherie H (1994) Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma-membrane HSP30, by ethanol levels above a critical threshold. Microbiology-(UK) 140:3031–3038

    CAS  Google Scholar 

  83. Penacho V, Blondin B, Valero E, Gonzalez R (2012) Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for KNR4/SMI1. Biotechnol Prog 28(2):327–336

    CAS  Google Scholar 

  84. Goossens K, Willaert R (2010) Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol Lett 32(11):1571–1585

    CAS  Google Scholar 

  85. Verstrepen KJ, Derdelinckx G, Delvaux FR, Winderickx J, Thevelein JM, Bauer FF, Pretorius IS (2001) Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J Am Soc Brew Chem 59(2):69–76

    CAS  Google Scholar 

  86. Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74(19):6041–6052

    CAS  Google Scholar 

  87. Govender P, Bester M, Bauer FF (2010) FLO gene-dependent phenotypes in industrial wine yeast strains. Appl Microbiol Biotechnol 86(3):931–945

    CAS  Google Scholar 

  88. Govender P, Kroppenstedt S, Bauer FF (2011) Novel wine-mediated FLO11 flocculation phenotype of commercial Saccharomyces cerevisiae wine yeast strains with modified FLO gene expression. FEMS Microbiol Lett 317(2):117–126

    CAS  Google Scholar 

  89. Donalies UEB, Stahl U (2001) Phase-specific gene expression in Saccharomyces cerevisiae, using maltose as carbon source under oxygen-limiting conditions. Curr Genet 39(3):150–155

    CAS  Google Scholar 

  90. Riou C, Nicaud JM, Barre P, Gaillardin C (1997) Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation. Yeast 13(10):903–915

    CAS  Google Scholar 

  91. Cunha AF, Missawa SK, Gomes LH, Reis SF, Pereira GAG (2006) Control by sugar of Saccharomyces cerevisiae flocculation for industrial ethanol production. FEMS Yeast Res 6(2):280–287

    CAS  Google Scholar 

  92. Li Q, Zhao XQ, Chang AK, Zhang QM, Bai FW (2012) Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab Eng 14(1):1–8

    Google Scholar 

  93. Vidgren V, Kankainen M, Londesborough J, Ruohonen L (2011) Identification of regulatory elements in the AGT1 promoter of ale and lager strains of brewer’s yeast. Yeast 28(8):579–594

    CAS  Google Scholar 

  94. Sahara H, Kotaka A, Kondo A, Ueda M, Hata Y (2009) Using promoter replacement and selection for loss of heterozygosity to generate an industrially applicable sake yeast strain that homozygously overproduces isoamyl acetate. J Biosci Bioeng 108(5):359–364

    CAS  Google Scholar 

  95. Shimoi H, Kitagaki H, Ohmori H, Iimura Y, Ito K (1998) Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180(13):3381–3387

    CAS  Google Scholar 

  96. Omura F, Nakao Y, Teranishi T, Fujita A (2009) High expression levels of cell wall protein Cwp2p decrease the turbidity of fresh lager beer by reducing the size of Haze particles. J Am Soc Brew Chem 67(3):135–140

    CAS  Google Scholar 

  97. Dahabieh MS, Husnik JI, van Vuuren HJJ (2009) Functional expression of the DUR3 gene in a wine yeast strain to minimize ethyl carbamate in chardonnay wine. Am J Enol Vitic 60(4):537–541

    CAS  Google Scholar 

  98. Wang JJ, Wang ZY, Liu XF, Guo XN, He XP, Wensel PC, Zhang BR (2010) Construction of an industrial brewing yeast strain to manufacture beer with low caloric content and improved flavor. J Microbiol Biotechnol 20(4):767–774

    CAS  Google Scholar 

  99. Zhang HB, Ruan H, Li WF, Zhang W, Su ZR, He GQ, Chen QH (2011) Construction of recombinant industrial S. cerevisiae strain with barley lipid-transfer protein 1 secretion capability and lower PrA activity. Eur Food Res Technol 233(4):707–716

    CAS  Google Scholar 

  100. Partow S, Siewers V, Bjorn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27(11):955–964

    CAS  Google Scholar 

  101. Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156(1):119–122

    CAS  Google Scholar 

  102. Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31(5):535–569

    CAS  Google Scholar 

  103. Lagunas R (1993) Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol Lett 104(3–4):229–242

    CAS  Google Scholar 

  104. Gibson BR, Boulton CA, Box WG, Graham NS, Lawrence SJ, Linforth RST, Smart KA (2008) Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation. Yeast 25(8):549–562

    CAS  Google Scholar 

  105. Backhus LE, DeRisi J, Brown PO, Bisson LF (2001) Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Res 1(2):111–125

    CAS  Google Scholar 

  106. Harsch MJ, Lee SA, Goddard MR, Gardner RC (2010) Optimized fermentation of grape juice by laboratory strains of Saccharomyces cerevisiae. FEMS Yeast Res 10(1):72–82

    CAS  Google Scholar 

  107. Pizarro F, Vargas FA, Agosin E (2007) A systems biology perspective of wine fermentations. Yeast 24(11):977–991

    CAS  Google Scholar 

  108. Schehl B, Muller C, Senn T, Heinisch JJ (2004) A laboratory yeast strain suitable for spirit production. Yeast 21(16):1375–1389

    CAS  Google Scholar 

  109. Rossouw D, Jolly N, Jacobson D, Bauer FF (2012) The effect of scale on gene expression: commercial versus laboratory wine fermentations. Appl Microbiol Biotechnol 93(3):1207–1219

    CAS  Google Scholar 

  110. Murata Y, Homma T, Kitagawa E, Momose Y, Sato MS, Odani M, Shimizu H, Hasegawa-Mizusawa M, Matsumoto R, Mizukami S, Fujita K, Parveen M, Komatsu Y, Iwahashi H (2006) Genome-wide expression analysis of yeast response during exposure to 4 degrees C. Extremophiles 10(2):117–128

    CAS  Google Scholar 

  111. Werner-Washburne M, Stone DE, Craig EA (1987) Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae. Mol Cell Biol 7(7):2568–2577

    CAS  Google Scholar 

  112. Homma T, Iwahashi H, Komatsu Y (2003) Yeast gene expression during growth at low temperature. Cryobiology 46(3):230–237

    CAS  Google Scholar 

  113. Kondo K, Inouye M (1991) TIP1, a cold shock-inducible gene of Saccharomyces cerevisiae. J Biol Chem 266(26):17537–17544

    CAS  Google Scholar 

  114. Hashimoto S, Ogura M, Aritomi K, Hoshida H, Nishizawa Y, Akada R (2005) Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis. Appl Environ Microbiol 71(1):312–319

    CAS  Google Scholar 

  115. Pronk JT, Steensma HY, vanDijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12(16):1607–1633

    CAS  Google Scholar 

  116. Cakar ZP, Sauer U, Bailey JE (1999) Metabolic engineering of yeast: the perils of auxotrophic hosts. Biotechnol Lett 21(7):611–616

    CAS  Google Scholar 

  117. Kodama Y, Fukui N, Ashikari T, Shibano Y, Moriokafujimoto K, Hiraki Y, Nakatani K (1995) Improvement of maltose fermentation efficiency—constitutive expression of mal genes in brewing yeasts. J Am Soc Brew Chem 53(1):24–29

    CAS  Google Scholar 

  118. Hadfield C, Cashmore AM, Meacock PA (1986) An efficient chloramphenicol-resistance marker for Saccharomyces cerevisiae and escherichia coli. Gene 45(2):149–158

    CAS  Google Scholar 

  119. Kunze G, Bode R, Rintala H, Hofemeister J (1989) Heterologous gene-expression of the glyphosate resistance marker and its application in yeast transformation. Curr Genet 15(2):91–98

    CAS  Google Scholar 

  120. Sikorski RS, Boeke JD (1991) In vitro mutagenesis and plasmid shuffling—from cloned gene to mutant yeast. Method Enzymol 194:302–318

    CAS  Google Scholar 

  121. Boeke JD, Lacroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast—5-fluoro-orotic acid resistance. Mol Gen Genet 197(2):345–346

    CAS  Google Scholar 

  122. Akada R, Matsuo K, Aritomi K, Nishizawa Y (1999) Construction of recombinant sake yeast containing a dominant FAS2 mutation without extraneous sequences by a two-step gene replacement protocol. J Biosci Bioeng 87(1):43–48

    CAS  Google Scholar 

  123. Kawahata M, Amari S, Nishizawa Y, Akada R (1999) A positive selection for plasmid loss in Saccharomyces cerevisiae using galactose-inducible growth inhibitory sequences. Yeast 15(1):1–10

    CAS  Google Scholar 

  124. Wang DL, Wang ZY, Liu N, He XP, Zhang BR (2008) Genetic modification of industrial yeast strains to obtain controllable NewFlo flocculation property and lower diacetyl production. Biotechnol Lett 30(11):2013–2018

    CAS  Google Scholar 

  125. Zhang JG, Liu XY, He XP, Guo XN, Lu Y, Zhang BR (2011) Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnol Lett 33(2):277–284

    CAS  Google Scholar 

  126. Casey GP, Xiao W, Rank GH (1988) A convenient dominant selection marker for gene-transfer in industrial strains of Saccharomyces yeast—SMRI encoded resistance to the herbicide sulfometuron methyl. J Inst Brew 94(2):93–97

    CAS  Google Scholar 

  127. Saerens SMG, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR (2008) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 74(2):454–461

    CAS  Google Scholar 

  128. Xie Q, Jimenez A (1996) Molecular cloning of a novel allele of SMR1 which determines sulfometuron methyl resistance in Saccharomyces cerevisiae. FEMS Microbiol Lett 137(2–3):165–168

    CAS  Google Scholar 

  129. Akada R, Kitagawa T, Kaneko S, Toyonaga D, Ito S, Kakihara Y, Hoshida H, Morimura S, Kondo A, Kida K (2006) PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast 23(5):399–405

    CAS  Google Scholar 

  130. Solis-Escalante D, Kuijpers NG, Bongaerts N, Bolat I, Bosman L, Pronk JT, Daran JM, Daran-Lapujade P (2013) amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 13(1):126–139

    CAS  Google Scholar 

  131. Cordero-Bueso G, Arroyo T, Serrano A, Valero E (2011) Remanence and survival of commercial yeast in different ecological niches of the vineyard. FEMS Microbiol Ecol 77(2):429–437

    CAS  Google Scholar 

  132. Ahmed FE (2002) Detection of genetically modified organisms in foods. Trends Biotechnol 20(5):215–223

    CAS  Google Scholar 

  133. Bauer FF, Dequin S, Pretorius IS, Schoeman H, Wolfaardt GM, Schroder MB, Grossmann M (2004) The assessment of the environmental impact of genetically modified wine yeast strains. Bulletin De L’oiv no. 881–882:515–528

  134. Leon C, Garcia-Canas V, Gonzalez R, Morales P, Cifuentes A (2011) Fast and sensitive detection of genetically modified yeasts in wine. J Chromatogr A 1218(42):7550–7556

    CAS  Google Scholar 

  135. Schoeman H, Wolfaardt GM, Botha A, van Rensburg P, Pretorius IS (2009) Establishing a risk-assessment process for release of genetically modified wine yeast into the environment. Can J Microbiol 55(8):990–1002

    CAS  Google Scholar 

  136. Moses SBG, Otero RRC, La Grange DC, van Rensburg P, Pretorius IS (2002) Different genetic backgrounds influence the secretory expression of the LKA1-encoded Lipomyces kononenkoae alpha-amylase in industrial strains of Saccharomyces cerevisiae. Biotechnol Lett 24(8):651–656

    Google Scholar 

  137. Grossmann M, Kiessling F, Singer J, Schoeman H, Schroder MB, von Wallbrunn C (2011) Genetically modified wine yeasts and risk assessment studies covering different steps within the wine making process. Ann Microbiol 61(1):103–115

    CAS  Google Scholar 

  138. Ando A, Suzuki C, Shima J (2005) Survival of genetically modified and self-cloned strains of commercial baker’s yeast in simulated natural environments: environmental risk assessment. Appl Environ Microbiol 71(11):7075–7082

    CAS  Google Scholar 

  139. Saerens SMG, Duong CT, Nevoigt E (2010) Genetic improvement of brewer’s yeast: current state, perspectives and limits. Appl Microbiol Biotechnol 86(5):1195–1212

    CAS  Google Scholar 

  140. Kodama Y, Kielland-Brandt M, Hansen J (2006) Lager brewing yeast. In: Sunnerhagen P, Piskur J (eds) Comparative genomics, vol 15., Topics in current geneticsSpringer, Berlin, pp 145–164

    Google Scholar 

  141. Libkind D, Hittinger CT, Valerio E, Goncalves C, Dover J, Johnston M, Goncalves P, Sampaio JP (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci U S A 108(35):14539–14544

    CAS  Google Scholar 

  142. Dunn B, Sherlock G (2008) Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res 18(10):1610–1623

    CAS  Google Scholar 

Download references

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Procopio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, S., Procopio, S. & Becker, T. Self-cloning brewing yeast: a new dimension in beverage production. Eur Food Res Technol 237, 851–863 (2013). https://doi.org/10.1007/s00217-013-2092-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-013-2092-9

Keywords

Navigation