Skip to main content
Log in

Detection of eight GMO maize events by qualitative, multiplex PCR and fluorescence capillary gel electrophoresis

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Specific legislation in the EU and several other countries requires that foods containing genetically modified organisms (GMOs) should be approved and labelled. This has necessitated the development of methods for detection of such materials. For screening purposes these methods should preferably enable detection of several different GMOs. Here we present a simple, robust, qualitative, nineplex PCR method for event-specific detection of maize T25, GA21, TC1507, MON863, MON810, NK603, construct specific detection of BT176, BT11 and detection of the endogenous hmga maize reference gene. PCR is carried out with primers labelled with fluorescent groups and the amplicons are detected using fluorescence capillary electrophoresis. Using mixtures of DNA from different certified reference materials, the detection limit was determined to approximately 0.1% for each GMO. Good agreement was observed in 85 of 88 determinations when eleven food and feed samples were analysed using the multiplex PCR assay and compared to results from quantitative real-time 5′-nuclease PCR. Discrepancies were only observed for one GMO at or close to the detection limit. The presented method is therefore suitable for screening purposes for food and feed containing the most common maize GMOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. James C (2006) ISAAA Brief No. 35

  2. Demeke T, Perry DJ, Scowcroft WR (2006) Can J Plant Sci 86:1–23

    Google Scholar 

  3. Grothaus GD, Bandla M, Currier T, Giroux R, Jenkins GR, Lipp M, Shan GM, Stave JW, Pantella V (2006) J Aoac Int 89:913–928

    CAS  Google Scholar 

  4. Holst-Jensen A (2007) Food toxicants analysis. Techniques, strategies and developments. Elsevier, The Netherlands 231–268

    Google Scholar 

  5. Griffiths K, Partis L, Croan D, Wang N, Elmslie KR (2002) Review of technologies for detecting genetically modified materials in commodities and food. Department of Agriculture, Fisheries and Forestry, Australia, pp 1–118

  6. Nadal A, Coll A, La Paz JL, Esteve T, Pla M (2006) Electrophoresis 27:3879–3888

    Article  CAS  Google Scholar 

  7. Onishi M, Matsuoka T, Kodama T, Kashiwaba K, Futo S, Akiyama H, Maitani T, Furui S, Oguchi T, Hino A (2005) J Agric Food Chem 53:9713–9721

    Article  CAS  Google Scholar 

  8. Kim JH, Song NS, Heo MS, Lee WY, Lee SH, Park SH, Park HK, Kim MC, Kim HY (2006) Food Sci Biotech 15:148–151

    CAS  Google Scholar 

  9. Rudi K, Rud I, Holck A (2003) Nucleic Acids Res 31:e62

    Article  Google Scholar 

  10. Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH (1997) Biotechn 23:504–511

    CAS  Google Scholar 

  11. Germini A, Zanetti A, Salati C, Rossi S, Forre C, Schmid S, Marchelli R (2004) J Agric Food Chem 52:3275–3280

    Article  CAS  Google Scholar 

  12. Leimanis S, Hernandez M, Fernandez S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O, Philipp P, Pla M, Puigdomenech P, Vaitilingom M, Bertheau Y, Remacle J (2006) Plant Mol Biol 61:123–139

    Article  CAS  Google Scholar 

  13. Xu J, Miao HZ, Wu HF, Huang WS, Tang R, Qiu MY, Wen JG, Zhu SF, Li Y (2006) Biosens Bioelectron 22:71–77

    Article  CAS  Google Scholar 

  14. Birch L, Archard CL, Parkes HC, McDowell DG (2001) Food Control 12:535–540

    Article  CAS  Google Scholar 

  15. Burns M, Shanahan D, Valdivia H, Harris N (2003) Eur Food Res Technol 216:428–433

    CAS  Google Scholar 

  16. Garcia-Canas V, Gonzalez R, Cifuentes A (2002) J Agric Food Chem 50:1016–1021

    Article  CAS  Google Scholar 

  17. Garcia-Canas V, Gonzalez R, Cifuentes A (2002) J Agric Food Chem 50:4497–4502

    Article  CAS  Google Scholar 

  18. Holst-Jensen A, Ronning SB, Lovseth A, Berdal KG (2003) Anal Bioanal Chem 375:985–993

    CAS  Google Scholar 

  19. Delseny M, Glaszmann JC (1995) Biofutur 146:52–56

    Article  Google Scholar 

  20. Hernandez M, Duplan MN, Berthier G, Vaitilingom M, Hauser W, Freyer R, Pla M, Bertheau Y (2004) J Agric Food Chem 52:4632–4637

    Article  CAS  Google Scholar 

  21. Vaitilingom M, Pijnenburg H, Gendre F, Brignon P (1999) J Agric Food Chem 47:5261–5266

    Article  CAS  Google Scholar 

  22. Holck A, Vaitilingom M, Didierjean L, Rudi K (2002) Eur Food Res Technol 214:449–453

    Article  CAS  Google Scholar 

  23. Nielsen CM, Berdal KG, Holst-Jensen A (2004) Eur Food Res Technol 219:421–427

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Norwegian Research Council project 154254/130 and the EU 6th Framework project “Co-Extra”. We want to thank Signe Drømtorp and Brit Oppegård Pedersen for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Holck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heide, B.R., Heir, E. & Holck, A. Detection of eight GMO maize events by qualitative, multiplex PCR and fluorescence capillary gel electrophoresis. Eur Food Res Technol 227, 527–535 (2008). https://doi.org/10.1007/s00217-007-0751-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0751-4

Keywords

Navigation