Skip to main content
Log in

Intracellular imaging and concurrent pH sensing of cancer-derived exosomes using surface-enhanced Raman scattering

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Exosomes have attracted significant attention as cancer diagnostic targets and therapeutic agents due to their unique biogenesis and structure. To clarify the biological activities of exosomes, it is important to obtain a picture of their intracellular distribution and how they evolve over time. In this work, a new kind of intracellular exosome imaging and concurrent pH sensing method is demonstrated by using the surface-enhanced Raman scattering (SERS) technique. Specifically, 4-mercaptobenzoic acid (4MBA)–tagged silver nanoparticles are attached onto the outer surfaces of exosomes, in which silver nanoparticles are employed as SERS generators. Raman agents 4MBA are susceptible to a specific intracellular stimulus, that is, undergo a protonation or deprotonation in response to intracellular pH variation, which correspondingly exhibit different vibrational spectra features. By using the SERS spectroscopy, tracking of the intracellular distribution of exosomes and the concurrent quantitative sensing of environmental pH were achieved, which demonstrated that, as time prolonged, exosomes first attached with the tumor cell surfaces, and then entered into the cells and accumulated in lysosomes. Such SERS-active hybridized exosomes, that are sensitive to discrete variations in intracellular pH, have proved their capability for the investigation of interactions between exosomes and cells. The spectral diversity and flexible surface modification of these hybridized exosomes are also highly expected in developing multifunctional exosome-based nanoplatforms, which offers great potential to promote the exosome-based therapeutics forward into an advanced stage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El Andaloussi S, Maeger I, Breakefield XO, Wood MJA. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12:348–58.

    Article  Google Scholar 

  2. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32:623–42.

    Article  CAS  PubMed  Google Scholar 

  4. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–U179.

    Article  CAS  PubMed  Google Scholar 

  5. Ferguson SW, Nguyen J. Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J Control Release. 2016;228:179–90.

    Article  CAS  PubMed  Google Scholar 

  6. Huang T, Deng C-X. Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. Int J Biol Sci. 2019;15:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koliha N, Heider U, Ozimkowski T, Wiemann M, Bosio A, Wild S. Melanoma affects the composition of blood cell-derived extracellular vesicles. Front Immunol. 2016;7:282.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li T, Long S, Gu M, Guo J, Liu Y, Zhang W, et al. Serum exosomal microRNAs as potent circulating biomarkers for melanoma. Melanoma Res. 2018;28:295–303.

    Article  CAS  Google Scholar 

  9. Savvateeva EN, Tikhonov AA, Butvilovskaya VI, Tsybulskaya MV, Rubina AY. Exosomal surface protein markers in diagnosis of colorectal cancer. Mol Biol. 2017;51:659–65.

    Article  CAS  Google Scholar 

  10. Xiao Y, Zhong J, Zhong B, Huang J, Jiang L, Jiang Y, et al. Exosomes as potential sources of biomarkers in colorectal cancer. Cancer Lett. 2020;476:13–22.

    Article  CAS  PubMed  Google Scholar 

  11. Meng Y, Sun J, Wang X, Hu T, Ma Y, Kong C, et al. Exosomes: a promising avenue for the diagnosis of breast cancer. Technol Cancer Res Treat. 2019;18:1533033818821421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sohn Y-S, Jang D-h, Na W. Immunoaffinity characteristics of exosomes from breast cancer cells using surface plasmon resonance spectroscopy. J Sens Sci Technol. 2019;28:355–9.

    Google Scholar 

  13. Tang Y, Huang Y, Li J, Qin S, Xu Y, An T, et al. Alterations in exosomal miRNA profile upon epithelial-mesenchymal transition in human lung cancer cell lines. BMC Genomics. 2018;19:802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang N, Song X, Liu L, Niu L, Wang X, Song X, et al. Circulating exosomes contain protein biomarkers of metastatic non-small-cell lung cancer. Cancer Sci. 2018;109:1701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Mark MT, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maji S, Chaudhary P, Akopova I, Nguyen PM, Hare RJ, Gryczynski I, et al. Exosomal annexin II promotes angiogenesis and breast cancer metastasis. Mol Cancer Res. 2017;15:93–105.

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez A, Vendrell M. Smart fluorescent probes for imaging macrophage activity. Chem Soc Rev. 2016;45:1182–96.

    Article  CAS  PubMed  Google Scholar 

  18. Gao W, Yuan J, Liu H, Wu C, Huang D, Zhu J, et al. Dendritic cells derived exosomes migration to spleen and induction of inflammation are regulated by CCR7. Sci Rep. 2017;7:42996–6.

  19. He F, Ye Z, Zhao L, Yin B, Ye B. Probing exosome internalization pathways through confocal microscopy imaging. Chem Commun. 2019;55:14015–8.

    Article  CAS  Google Scholar 

  20. Suetsugu A, Honma K, Saji S, Moriwaki H, Ochiya T, Hoffman RM. Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv Drug Deliv Rev. 2013;65:383–90.

    Article  CAS  PubMed  Google Scholar 

  21. Fan Z, Xiao K, Lin J, Liao Y, Huang X. Functionalized DNA enables programming exosomes/vesicles for tumor imaging and therapy. Small. 2019;15:e1903761.

    Article  PubMed  Google Scholar 

  22. Vegh RB, Bravaya KB, Bloch DA, Bommarius AS, Tolbert LM, Verkhovsky M, et al. Chromophore photoreduction in red fluorescent proteins is responsible for bleaching and phototoxicity. J Phys Chem B. 2014;118:4527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu X, Braun GB, Zhong H, Hall DJ, Han W, Qin M, et al. Tumor-targeted multimodal optical imaging with versatile cadmium-free quantum dots. Adv Funct Mater. 2016;26:267–76.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Z, Zong S, Li W, Wang C, Xu S, Chen H, et al. SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice. J Am Chem Soc. 2012;134:2993–3000.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z, Zong S, Chen H, Wang C, Xu S, Cui Y. SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation. Adv Healthc Mater. 2014;3:1889–97.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Yan B, Chen L. SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev. 2013;113:1391–428.

    Article  CAS  PubMed  Google Scholar 

  27. Doering WE, Nie SM. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal Chem. 2003;75:6171–6.

    Article  CAS  PubMed  Google Scholar 

  28. Hada A-M, Potara M, Suarasan S, Vulpoi A, Nagy-Simon T, Licarete E, et al. Fabrication of gold-silver core-shell nanoparticles for performing as ultrabright SERS-nanotags inside human ovarian cancer cells. Nanotechnology. 2019;30:315701.

    Article  CAS  PubMed  Google Scholar 

  29. Dharmalingam P, Venkatakrishnan K, Tan B. Probing cancer metastasis at a single-cell level with a Raman-functionalized anionic probe. Nano Lett. 2020;20:1054–66.

    Article  CAS  PubMed  Google Scholar 

  30. Kuku G, Saricam M, Akhatova F, Danilushkina A, Fakhrullin R, Culha M. Surface-enhanced Raman scattering to evaluate nanomaterial cytotoxicity on living cells. Anal Chem. 2016;88:9813–20.

    Article  CAS  PubMed  Google Scholar 

  31. Sheena TS, Devaraj V, Lee J-M, Balaji P, Gnanasekar P, Oh J-W, et al. Sensitive and label-free shell isolated Ag NPs@Si architecture based SERS active substrate: FDTD analysis and in-situ cellular DNA detection. Appl Surf Sci. 2020;515:145955.

    Article  CAS  Google Scholar 

  32. Chen H, Wang Z, Zong S, Wu L, Chen P, Zhu D, et al. SERS-fluorescence monitored drug release of a redox-responsive nanocarrier based on graphene oxide in tumor cells. ACS Appl Mater Interfaces. 2014;6:17526–33.

    Article  CAS  PubMed  Google Scholar 

  33. Zong S, Wang Z, Chen H, Cui Y. Assessing telomere length using surface enhanced Raman scattering. Sci Rep. 2014;4:6977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen H, Wang Z, Ma X, Zong S, Cui Y. Magnetically controllable dual-mode nanoprobes for cell imaging with an onion-liked structure. Talanta. 2013;116:978–84.

    Article  CAS  PubMed  Google Scholar 

  35. Zong S, Wang Z, Chen H, Yang J, Cui Y. Surface enhanced Raman scattering traceable and glutathione responsive nanocarrier for the intracellular drug delivery. Anal Chem. 2013;85:2223–30.

    Article  CAS  PubMed  Google Scholar 

  36. Puppulin L, Hosogi S, Sun H, Matsuo K, Inui T, Kumamoto Y, et al. Bioconjugation strategy for cell surface labelling with gold nanostructures designed for highly localized pH measurement. Nat Commun. 2018;9:5278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86:3391–5.

    Article  CAS  Google Scholar 

  38. Konnova SA, Danilushkina AA, Fakhrullina GI, Akhatova FS, Badrutdinov AR, Fakhrullin RF. Silver nanoparticle-coated “cyborg” microorganisms: rapid assembly of polymer-stabilised nanoparticles on microbial cells. RSC Adv. 2015;5:13530–7.

    Article  CAS  Google Scholar 

  39. Wang Z, Zong S, Chen H, Wu H, Cui Y. Silica coated gold nanoaggregates prepared by reverse microemulsion method: dual mode probes for multiplex immunoassay using SERS and fluorescence. Talanta. 2011;86:170–7.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu D, Wang Z, Zong S, Chen H, Wu X, Pei Y, et al. Ag@4ATP-coated liposomes: SERS traceable delivery vehicles for living cells. Nanoscale. 2014;6:8155–61.

    Article  CAS  PubMed  Google Scholar 

  41. Chen P, Wang Z, Zong S, Zhu D, Chen H, Zhang Y, et al. pH-sensitive nanocarrier based on gold/silver core-shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells. Biosens Bioelectron. 2016;75:446–51.

    Article  CAS  PubMed  Google Scholar 

  42. Capocefalo A, Mammucari D, Brasili F, Fasolato C, Bordi F, Postorino P, et al. Exploring the potentiality of a SERS-active pH nano-biosensor. Front Chem. 2019;7.

  43. Zhang Z, Bando K, Mochizuki K, Taguchi A, Fujita K, Kawata S. Quantitative evaluation of surface-enhanced Raman scattering nanoparticles for intracellular pH sensing at a single particle level. Anal Chem. 2019;91:3254–62.

    Article  CAS  PubMed  Google Scholar 

  44. Xu M, Ma X, Wei T, Lu Z-X, Ren B. In situ imaging of live-cell extracellular pH during cell apoptosis with surface-enhanced Raman spectroscopy. Anal Chem. 2018;90:13922–8.

    Article  CAS  PubMed  Google Scholar 

  45. Shen Y, Liang L, Zhang S, Huang D, Zhang J, Xu S, et al. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing. Nanoscale. 2018;10:1622–30.

    Article  CAS  PubMed  Google Scholar 

  46. Pallaoro A, Braun GB, Reich NO, Moskovits M. Mapping local pH in live cells using encapsulated fluorescent SERS nanotags. Small. 2010;6:618–22.

    Article  CAS  PubMed  Google Scholar 

  47. Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T. Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem. 2004;76:7064–8.

    Article  CAS  PubMed  Google Scholar 

  48. Gong Y-J, Zhang M-L, Wang B-X, Lv Q, Wang Y, Dong W. A smart approach toward rhodamine spiro-ring derivatives sensing platform for lysosome-targetable imaging applications. Sens Actuators B Chem. 2019;283:239–46.

    Article  CAS  Google Scholar 

  49. Kneipp J, Kneipp H, Wittig B, Kneipp K. Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J Phys Chem C. 2010;114:7421–6.

    Article  CAS  Google Scholar 

  50. Zinchuk V, Zinchuk O. Quantitative colocalization analysis of confocal fluorescence microscopy images. Curr Protoc Cell Biol. 2008;39:4.19. 11–14.19. 16.

  51. Zinchuk V, Zinchuk O, Okada T. Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem. 2007;40:101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 61805143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Luo, C. & Zhang, S. Intracellular imaging and concurrent pH sensing of cancer-derived exosomes using surface-enhanced Raman scattering. Anal Bioanal Chem 413, 4091–4101 (2021). https://doi.org/10.1007/s00216-021-03365-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03365-w

Keywords

Navigation