Skip to main content
Log in

Development and comparison of mimotope-based immunoassays for the analysis of fumonisin B1

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mycotoxins can be found as natural contaminants in many foods and feeds, and owing to their toxic effects, it is essential to detect them before they enter the food chain. An interesting approach for the analysis of mycotoxins by competitive immunoassays is the use of epitope-mimicking peptides, or mimotopes, which can replace the toxin conjugates traditionally used in such assays. Mimotopes can be selected from phage-displayed peptide libraries even without any prior knowledge of the antibody–antigen interaction, and after identifying the target specific clones, individual clones can be efficiently amplified in bacteria and used directly in the immunoassay. Following such approach, we have previously selected and identified a dodecapeptide which functions as a mimotope for the mycotoxin fumonisin B1. In this work, we present the development and comparison of various immunoassays based on this mimotope, named A2, which has been used in the phage-displayed format in which it was selected, but also as a fluorescent recombinant fusion protein or as a synthetic peptide. The highest sensitivity was obtained with a magnetic bead–based assay using the synthetic peptide and enzymatic detection which provided a detection limit of 0.029 ng mL−1. Analysis of the binding kinetics by surface plasmon resonance (SPR) further reinforced the suitability of the synthetic peptide for the competitive immunoassays, as this mimotope showed a slightly lower affinity for the target antibody in comparison with the recombinant fusion protein.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wild D. The immunoassay handbook: theory and applications of ligand binding, ELISA, and related techniques. 4th ed. Oxford: Elsevier; 2013.

    Google Scholar 

  2. Chauhan R, Singh J, Sachdev T, Basu T, Malhotra BD. Recent advances in mycotoxins detection. Biosens Bioelectron. 2016;81:532–45.

    Article  CAS  PubMed  Google Scholar 

  3. Qiu Y-L, He Q-H, Xu Y, Bhunia AK, Tu Z, Chen B, et al. Deoxynivalenol-mimic nanobody isolated from a naïve phage display nanobody library and its application in immunoassay. Anal Chim Acta. 2015;887:201–8.

    Article  CAS  PubMed  Google Scholar 

  4. Xiao H, Clarke JR, Marquardt RR, Frohlich AA. Improved methods for conjugating selected mycotoxins to carrier proteins and dextran for immunoassays. J Agric Food Chem. 1995;43:2092–7.

    Article  CAS  Google Scholar 

  5. Peltomaa R, Benito-Peña E, Moreno-Bondi MC. Bioinspired recognition elements for mycotoxin sensors. Anal Bioanal Chem. 2018;410:747–71.

    Article  CAS  PubMed  Google Scholar 

  6. Berthiller F, Brera C, Crews C, Iha MH, Krska R, Lattanzio VMT, et al. Developments in mycotoxin analysis: an update for 2014-2015. World Mycotoxin J. 2016;9:5–30.

    Article  CAS  Google Scholar 

  7. Freire FDCO, da Rocha MEB. Impact of mycotoxins on human health. In: Mérillon J-M, Ramawat KG, editors. Fungal metabolites. Cham: Springer International Publishing; 2016.

    Google Scholar 

  8. Goyal S, Ramawat KG, Mérillon JM. Different shades of fungal metabolites: an overview. In: Mérillon J-M, Ramawat KG, editors. Fungal metabolites. Cham: Springer International Publishing; 2016.

    Google Scholar 

  9. Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16:497–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. European Commission Regulation (EC) No 1881/2006. Off J Eur Union. 2006;L364:5–24.

    Google Scholar 

  11. European Commission Regulation (EC) No 1126/2007. Off J Eur Union. 2007;L255:14–7.

    Google Scholar 

  12. European Commission Regulation (EC) No 105/2010. Off J Eur Union. 2010;L35:7–8.

    Google Scholar 

  13. European Commission Regulation (EC) No 165/2010. Off J Eur Union. 2010;L50:8–12.

    Google Scholar 

  14. Senyuva HZ, Gilbert J, Stroka J. Determination of fumonisins B1 and B2 in corn by LC/MS with immunoaffinity column cleanup: Interlaboratory study. J AOAC Int. 2010;93:211–21.

    Article  Google Scholar 

  15. Solfrizzo M, Girolamo AD, Gambacorta L, Visconti A, Stroka J, van Egmond HP. Determination of fumonisins B1 and B2 in corn-based foods for infants and young children by LC with immunoaffinity column cleanup: Interlaboratory validation study. J AOAC Int. 2011;94:900–8.

    Article  CAS  PubMed  Google Scholar 

  16. Goryacheva IY, Saeger SD, Eremin SA, Peteghem CV. Immunochemical methods for rapid mycotoxin detection: evolution from single to multiple analyte screening: a review. Food Addit Contam. 2007;24:1169–83.

    Article  CAS  PubMed  Google Scholar 

  17. Köppen R, Koch M, Siegel D, Merkel S, Maul R, Nehls I. Determination of mycotoxins in foods: current state of analytical methods and limitations. Appl Microbiol Biotechnol. 2010;86:1595–612.

    Article  PubMed  CAS  Google Scholar 

  18. Wang Y, Wang H, Li P, Zhang Q, Kim HJ, Gee SJ, et al. Phage-displayed peptide that mimics aflatoxins and its application in immunoassay. J Agric Food Chem. 2013;61:2426–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yuan Q, Pestka JJ, Hespenheide BM, Kuhn LA, Linz JE, Hart LP. Identification of mimotope peptides which bind to the mycotoxin deoxynivalenol-specific monoclonal antibody. Appl Environ Microbiol. 1999;8:65.

    Google Scholar 

  20. Peltomaa R, Benito-Peña E, Barderas R, Sauer U, González Andrade M, Moreno-Bondi MC. Microarray-based immunoassay with synthetic mimotopes for the detection of fumonisin B1. Anal Chem. 2017;89:6216–23.

    Article  CAS  PubMed  Google Scholar 

  21. Xu Y, Chen B, He Q, Qiu Y-L, Liu X, He Z, et al. New approach for development of sensitive and environmentally friendly immunoassay for mycotoxin fumonisin B1 based on using peptide-MBP fusion protein as substitute for coating antigen. Anal Chem. 2014;86:8433–40.

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Xu Y, He Q, He Z, Xiong Z. Application of mimotope peptides of fumonisin B1 in peptide ELISA. J Agric Food Chem. 2013;61:4765–70.

    Article  CAS  PubMed  Google Scholar 

  23. Liu R, Yu Z, He Q, Xu Y. An immunoassay for ochratoxin A without the mycotoxin. Food Control. 2007;18:872–7.

    Article  CAS  Google Scholar 

  24. Lai W, Fung DYC, Yang X, Renrong L, Xiong Y. Development of a colloidal gold strip for rapid detection of ochratoxin A with mimotope peptide. Food Control. 2009;20:791–5.

    Article  CAS  Google Scholar 

  25. He Z, He Q, Xu Y, Li Y, Liu X, Chen B, et al. Ochratoxin A mimotope from second-generation peptide library and its application in immunoassay. Anal Chem. 2013;85:10304–11.

    Article  CAS  PubMed  Google Scholar 

  26. Xu Y, He Z, He Q, Qiu Y, Chen B, Chen J, et al. Use of cloneable peptide–MBP fusion protein as a mimetic coating antigen in the standardized immunoassay for mycotoxin ochratoxin A. J Agric Food Chem. 2014;62:8830–6.

    Article  CAS  PubMed  Google Scholar 

  27. Zou X, Chen C, Huang X, Chen X, Wang L, Xiong Y. Phage-free peptide ELISA for ochratoxin A detection based on biotinylated mimotope as a competing antigen. Talanta. 2016;146:394–400.

    Article  CAS  PubMed  Google Scholar 

  28. He Q-H, Xu Y, Huang Y-H, Liu R-R, Huang Z-B, Li Y-P. Phage-displayed peptides that mimic zearalenone and its application in immunoassay. Food Chem. 2011;126:1312–5.

    Article  CAS  Google Scholar 

  29. Barbas CFI, Burton DR, Scott JK, Silverman GJ. Phage display: a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001.

    Google Scholar 

  30. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315–7.

    Article  CAS  PubMed  Google Scholar 

  31. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348:552–4.

    Article  CAS  PubMed  Google Scholar 

  32. Peltomaa R, López-Perolio I, Benito-Peña E, Barderas R, Moreno-Bondi MC. Application of bacteriophages in sensor development. Anal Bioanal Chem. 2016;408:1805–28.

    Article  CAS  PubMed  Google Scholar 

  33. Smartt AE, Ripp S. Bacteriophage reporter technology for sensing and detecting microbial targets. Anal Bioanal Chem. 2011;400:991–1007.

    Article  CAS  PubMed  Google Scholar 

  34. Carlomagno M, Lassabe G, Rossotti M, González-Techera A, Vanrell L, González-Sapienza G. Recombinant streptavidin nanopeptamer anti-immunocomplex assay for noncompetitive detection of small analytes. Anal Chem. 2014;86:10467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ding Y, Hua X, Chen H, Liu F, González-Sapien G, Wang M. Recombinant peptidomimetic-nano luciferase tracers for sensitive single-step immunodetection of small molecules. Anal Chem. 2018;90:2230–7.

    Article  CAS  PubMed  Google Scholar 

  36. Ding Y, Hua X, Du M, Yang Q, Hou L, Wang L, et al. Recombinant, fluorescent, peptidomimetic tracer for immunodetection of imidaclothiz. Anal Chem. 2018;90:13996–4002.

    Article  CAS  PubMed  Google Scholar 

  37. Peltomaa R, Amaro-Torres F, Carrasco S, Orellana G, Benito-Peña E, Moreno-Bondi MC. Homogeneous quenching immunoassay for fumonisin B1 based on gold nanoparticles and an epitope-mimicking yellow fluorescent protein. ACS Nano. 2018;12:11333–42.

    Article  CAS  PubMed  Google Scholar 

  38. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol. 1999;17:969–73.

    Article  CAS  PubMed  Google Scholar 

  39. Clontech Living Colors User Manual, vol II. Red Fluorescent Protein, Protocol PT3404−1. www.clontech.com. Accessed 10 May 2018.

  40. Marco M-P, Gee S, Hammock BD. Immunochemical techniques for environmental analysis I. Immunosensors. TrAC. 1995;14:341–50.

    CAS  Google Scholar 

  41. Herranz S, Marazuela MD, Moreno-Bondi MC. Automated portable array biosensor for multisample microcystin analysis in freshwater samples. Biosens Bioelectron. 2012;33:50–5.

    Article  CAS  PubMed  Google Scholar 

  42. Davies J, Roberts CJ, Dawkes AC, Sefton J, Edwards JC, Glasbey TO, et al. Use of scanning probe microscopy and surface plasmon resonance as analytical tools in the study of antibody-coated microtiter wells. Langmuir. 1994;10:2654–61.

    Article  CAS  Google Scholar 

  43. Shen M, Rusling J, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods. 2017;116:95–111.

    Article  CAS  PubMed  Google Scholar 

  44. He Q, Xu Y, Zhang C, Li Y, Huang Z. Phage-borne peptidomimetics as immunochemical reagent in dot-immunoassay for mycotoxin zearalenone. Food Control. 2014;39:56–61.

    Article  CAS  Google Scholar 

  45. New England Biolabs (NEB) Ph.D. Phage Display Libraries - instruction manual. www.neb.com. Accessed 31 Jan 2019.

  46. Ji Y, He Q, Xu Y, Tu Z, Yang H, Qiu Y, et al. Phage displayed anti-idiotypic nanobody mediated immuno-PCR for sensitive and environmentally friendly detection of mycotoxin ochratoxin A. Anal Methods. 2016;8:7824–31.

    Article  CAS  Google Scholar 

  47. Shu M, Xu Y, Wang D, Liu X, Li Y, He Q, et al. Anti-idiotypic nanobody: a strategy for development of sensitive and green immunoassay for fumonisin B1. Talanta. 2015;143:388–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

R.P. acknowledges UCM for a pre-doctoral grant and R.B. the PI17CIII/00045 grant from the AES-ISCIII program.

Funding

This research was funded by the Spanish Ministry of Science, Innovation and Universities, grant RTI2018-096410-B-C21.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena Benito-Peña or María C. Moreno-Bondi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peltomaa, R., Agudo-Maestro, I., Más, V. et al. Development and comparison of mimotope-based immunoassays for the analysis of fumonisin B1. Anal Bioanal Chem 411, 6801–6811 (2019). https://doi.org/10.1007/s00216-019-02068-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02068-7

Keywords

Navigation